Spaces:
Paused
Paused
Adjusted app.py file
Browse files
app.py
CHANGED
|
@@ -3,44 +3,39 @@ import json
|
|
| 3 |
import gradio as gr
|
| 4 |
import google.generativeai as genai
|
| 5 |
|
| 6 |
-
GOOGLE_API_KEY = os.environ.get(
|
| 7 |
genai.configure(api_key=GOOGLE_API_KEY)
|
| 8 |
|
| 9 |
# Set up the model
|
| 10 |
generation_config = {
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
}
|
| 16 |
|
| 17 |
safety_settings = [
|
| 18 |
-
|
| 19 |
-
"category": "
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 29 |
-
},
|
| 30 |
-
{
|
| 31 |
-
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
| 32 |
-
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
| 33 |
-
}
|
| 34 |
]
|
| 35 |
|
| 36 |
model = genai.GenerativeModel(
|
| 37 |
model_name="gemini-pro",
|
| 38 |
generation_config=generation_config,
|
| 39 |
-
safety_settings=safety_settings
|
| 40 |
)
|
| 41 |
|
| 42 |
task_description = " You are an SMS (Short Message Service) reader who reads every message that the short message service centre receives and you need to classify each message among the following categories: {}<div>Let the output be a softmax function output giving the probability of message belonging to each category.</div><div>The sum of the probabilities should be 1</div><div>The output must be in JSON format</div>"
|
| 43 |
|
|
|
|
| 44 |
def classify_msg(categories, message):
|
| 45 |
prompt_parts = [
|
| 46 |
task_description.format(categories),
|
|
@@ -51,18 +46,20 @@ def classify_msg(categories, message):
|
|
| 51 |
response = model.generate_content(prompt_parts)
|
| 52 |
|
| 53 |
json_response = json.loads(
|
| 54 |
-
response.text[response.text.find(
|
| 55 |
)
|
| 56 |
|
| 57 |
return gr.Label(json_response)
|
| 58 |
|
|
|
|
| 59 |
def clear_inputs_and_outputs():
|
| 60 |
return [None, None, None]
|
| 61 |
|
|
|
|
| 62 |
with gr.Blocks() as demo:
|
| 63 |
gr.Markdown(
|
| 64 |
"""
|
| 65 |
-
|
| 66 |
This space demos SMS and text in general classification using Gemini Pro<br> \
|
| 67 |
For the categories, enter a list of words separated by commas<br><br>
|
| 68 |
"""
|
|
@@ -70,7 +67,10 @@ For the categories, enter a list of words separated by commas<br><br>
|
|
| 70 |
with gr.Row():
|
| 71 |
with gr.Column():
|
| 72 |
with gr.Row():
|
| 73 |
-
categories = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
| 74 |
with gr.Row():
|
| 75 |
message = gr.Textbox(label="Message", placeholder="Enter Message")
|
| 76 |
with gr.Row():
|
|
@@ -92,10 +92,10 @@ For the categories, enter a list of words separated by commas<br><br>
|
|
| 92 |
|
| 93 |
gr.Examples(
|
| 94 |
examples=[
|
| 95 |
-
[
|
| 96 |
-
[
|
| 97 |
-
[
|
| 98 |
-
[
|
| 99 |
],
|
| 100 |
inputs=[categories, message],
|
| 101 |
outputs=lbl_output,
|
|
@@ -103,4 +103,4 @@ For the categories, enter a list of words separated by commas<br><br>
|
|
| 103 |
cache_examples=True,
|
| 104 |
)
|
| 105 |
|
| 106 |
-
demo.launch()
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import google.generativeai as genai
|
| 5 |
|
| 6 |
+
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
|
| 7 |
genai.configure(api_key=GOOGLE_API_KEY)
|
| 8 |
|
| 9 |
# Set up the model
|
| 10 |
generation_config = {
|
| 11 |
+
"temperature": 0.9,
|
| 12 |
+
"top_p": 1,
|
| 13 |
+
"top_k": 1,
|
| 14 |
+
"max_output_tokens": 2048,
|
| 15 |
}
|
| 16 |
|
| 17 |
safety_settings = [
|
| 18 |
+
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
| 19 |
+
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
|
| 20 |
+
{
|
| 21 |
+
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
| 22 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE",
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
| 26 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE",
|
| 27 |
+
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
]
|
| 29 |
|
| 30 |
model = genai.GenerativeModel(
|
| 31 |
model_name="gemini-pro",
|
| 32 |
generation_config=generation_config,
|
| 33 |
+
safety_settings=safety_settings,
|
| 34 |
)
|
| 35 |
|
| 36 |
task_description = " You are an SMS (Short Message Service) reader who reads every message that the short message service centre receives and you need to classify each message among the following categories: {}<div>Let the output be a softmax function output giving the probability of message belonging to each category.</div><div>The sum of the probabilities should be 1</div><div>The output must be in JSON format</div>"
|
| 37 |
|
| 38 |
+
|
| 39 |
def classify_msg(categories, message):
|
| 40 |
prompt_parts = [
|
| 41 |
task_description.format(categories),
|
|
|
|
| 46 |
response = model.generate_content(prompt_parts)
|
| 47 |
|
| 48 |
json_response = json.loads(
|
| 49 |
+
response.text[response.text.find("{") : response.text.rfind("}") + 1]
|
| 50 |
)
|
| 51 |
|
| 52 |
return gr.Label(json_response)
|
| 53 |
|
| 54 |
+
|
| 55 |
def clear_inputs_and_outputs():
|
| 56 |
return [None, None, None]
|
| 57 |
|
| 58 |
+
|
| 59 |
with gr.Blocks() as demo:
|
| 60 |
gr.Markdown(
|
| 61 |
"""
|
| 62 |
+
# Multi-language Text Classifier using Gemini Pro \
|
| 63 |
This space demos SMS and text in general classification using Gemini Pro<br> \
|
| 64 |
For the categories, enter a list of words separated by commas<br><br>
|
| 65 |
"""
|
|
|
|
| 67 |
with gr.Row():
|
| 68 |
with gr.Column():
|
| 69 |
with gr.Row():
|
| 70 |
+
categories = gr.Textbox(
|
| 71 |
+
label="Categories",
|
| 72 |
+
placeholder="Input the list of categories as comma separated words",
|
| 73 |
+
)
|
| 74 |
with gr.Row():
|
| 75 |
message = gr.Textbox(label="Message", placeholder="Enter Message")
|
| 76 |
with gr.Row():
|
|
|
|
| 92 |
|
| 93 |
gr.Examples(
|
| 94 |
examples=[
|
| 95 |
+
["Normal, Promotional, Urgent", "Will you be passing by?"],
|
| 96 |
+
["Spam, Ham", "Plus de 300 % de perte de poids pendant le régime."],
|
| 97 |
+
["Χαρούμενος, Δυστυχισμένος", "Η εξυπηρέτηση σας ήταν απαίσια"],
|
| 98 |
+
["مهم، أقل أهمية ", "خبر عاجل"],
|
| 99 |
],
|
| 100 |
inputs=[categories, message],
|
| 101 |
outputs=lbl_output,
|
|
|
|
| 103 |
cache_examples=True,
|
| 104 |
)
|
| 105 |
|
| 106 |
+
demo.launch(debug=True, share=True)
|