Spaces:
Runtime error
Runtime error
File size: 11,011 Bytes
24927f2 1444ed5 c9e715d 1444ed5 f16d0cc 1444ed5 5d99b0b 1444ed5 af9ef77 f16d0cc c9e715d 62aa642 24927f2 62aa642 d0ee279 af9ef77 62aa642 1444ed5 24927f2 af9ef77 24927f2 1444ed5 ec11250 1444ed5 ec11250 1444ed5 ec11250 1444ed5 c9e715d ec11250 c9e715d 1444ed5 ec11250 1444ed5 7d5465d 1444ed5 c9e715d 1444ed5 c9e715d 7d5465d c9e715d 1444ed5 7d5465d ec11250 1444ed5 7d5465d 1444ed5 7d5465d 1444ed5 ec11250 7d5465d 1444ed5 f16d0cc 1444ed5 f16d0cc 1444ed5 f16d0cc 1444ed5 f16d0cc 1444ed5 f16d0cc 1444ed5 5d99b0b 1444ed5 5d99b0b f16d0cc 1444ed5 f16d0cc 5d99b0b 1444ed5 5d99b0b 7d5465d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import os, io, base64, urllib.request, ssl, time, json, pathlib
from typing import Optional, List
import numpy as np, cv2
from ultralytics import YOLO
import easyocr
from PIL import Image
import pillow_heif
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
os.environ.setdefault("YOLO_CONFIG_DIR", "/tmp/Ultralytics")
os.environ.setdefault("HF_HOME", "/tmp/.cache/huggingface")
os.makedirs(os.environ["YOLO_CONFIG_DIR"], exist_ok=True)
os.environ.setdefault("OMP_NUM_THREADS", "2")
os.environ.setdefault("OPENBLAS_NUM_THREADS", "2")
os.environ.setdefault("MKL_NUM_THREADS", "2")
import torch
torch.set_num_threads(2)
TMP_DIR = "/tmp"
paths = [
f"{TMP_DIR}/Ultralytics",
f"{TMP_DIR}/.EasyOCR",
f"{TMP_DIR}/.EasyOCR/user_network",
f"{TMP_DIR}/mplconfig",
]
for p in paths:
os.makedirs(p, exist_ok=True)
from huggingface_hub import hf_hub_download
# --- PESOS COMPATIBLES ULTRALYTICS (YOLOv11) ---
REPO_ID = "morsetechlab/yolov11-license-plate-detection"
FILENAME = "license-plate-finetune-v1n.pt" # o v1s/v1m/v1l/v1x
WEIGHTS = hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
yolo = YOLO(WEIGHTS)
# EasyOCR con GPU si está disponible
reader = easyocr.Reader(
['en'],
gpu=torch.cuda.is_available(),
model_storage_directory="/tmp/.EasyOCR",
)
ALLOW = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
def clamp(v, lo, hi):
return max(lo, min(hi, v))
def expand_box(xyxy, w, h, pad_ratio=0.10):
x1, y1, x2, y2 = [int(v) for v in xyxy]
bw, bh = x2 - x1, y2 - y1
px, py = int(bw * pad_ratio), int(bh * pad_ratio)
nx1 = clamp(x1 - px, 0, w - 1)
ny1 = clamp(y1 - py, 0, h - 1)
nx2 = clamp(x2 + px, 0, w - 1)
ny2 = clamp(y2 + py, 0, h - 1)
return nx1, ny1, nx2, ny2
def ensure_min_size(img_bgr, target_long=320):
h, w = img_bgr.shape[:2]
m = max(h, w)
if m < target_long:
scale = target_long / float(m)
nh, nw = int(round(h * scale)), int(round(w * scale))
img_bgr = cv2.resize(img_bgr, (nw, nh), interpolation=cv2.INTER_CUBIC)
return img_bgr
def preproc_adaptive(plate_bgr):
img = ensure_min_size(plate_bgr) # asegura tamaño
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.bilateralFilter(gray, 7, 50, 50)
th = cv2.adaptiveThreshold(
gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 5
)
# opcional: cerrar huecos finos
k = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
th = cv2.morphologyEx(th, cv2.MORPH_CLOSE, k, iterations=1)
return th
def preproc_clahe_otsu(plate_bgr):
img = ensure_min_size(plate_bgr)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
eq = clahe.apply(gray)
_, th = cv2.threshold(eq, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
k = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
th = cv2.morphologyEx(th, cv2.MORPH_CLOSE, k, iterations=1)
return th
def read_easy(img, allow=ALLOW):
out = reader.readtext(img, detail=1, allowlist=allow)
cands = []
for _, text, score in out:
t = "".join(c for c in (text or "").upper() if c in allow)
if len(t) >= 4:
cands.append((t, float(score)))
if not cands:
return "", 0.0
cands.sort(key=lambda x: (x[1], len(x[0])), reverse=True)
return cands[0]
def preprocess_for_ocr(plate_bgr):
img = plate_bgr.copy()
h, w = img.shape[:2]
if max(h, w) < 160:
img = cv2.resize(img, (w*2, h*2), interpolation=cv2.INTER_CUBIC)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.bilateralFilter(gray, 7, 50, 50)
th = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 31, 5)
return th
def ocr_plate(plate_bgr):
# 1) adaptativa
t, s = read_easy(preproc_adaptive(plate_bgr))
if t:
return t, s
# 2) CLAHE + Otsu (fallback)
return read_easy(preproc_clahe_otsu(plate_bgr))
def draw_box_text(img, xyxy, text, color=(0, 255, 0)):
x1, y1, x2, y2 = [int(v) for v in xyxy]
cv2.rectangle(img, (x1,y1), (x2,y2), color, 2)
if text:
tsize = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)[0]
cv2.rectangle(img, (x1, y1 - tsize[1] - 6), (x1 + tsize[0] + 4, y1), color, -1)
cv2.putText(img, text, (x1 + 2, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,0), 2, cv2.LINE_AA)
def detect_plates_bgr(bgr, conf=0.25, iou=0.45):
# 512 es buen sweet spot en CPU
res = yolo.predict(bgr, conf=conf, iou=iou, imgsz=512, max_det=1, verbose=False)[0]
boxes = res.boxes.xyxy.cpu().numpy() if res.boxes is not None else np.empty((0,4))
confs = res.boxes.conf.cpu().numpy() if res.boxes is not None else np.empty((0,))
return boxes, confs
def run_on_image_bgr(bgr, conf=0.25, iou=0.45, with_ocr=True, annotate=True, max_plates=1):
h, w = bgr.shape[:2]
vis = bgr.copy()
t0 = time.time()
boxes, confs = detect_plates_bgr(bgr, conf, iou)
idx = np.argsort(-confs)[:max_plates]
boxes, confs = boxes[idx], confs[idx]
detections = []
for xyxy, c in zip(boxes, confs):
x1, y1, x2, y2 = expand_box(xyxy, w, h, pad_ratio=0.10)
crop = bgr[y1:y2, x1:x2]
txt, s = ("", 0.0)
# 👇 no gastes OCR si la caja es floja
if with_ocr and crop.size and float(c) >= 0.55:
txt, s = ocr_plate(crop)
if annotate:
label = f"{txt or 'plate'} {c:.2f}"
draw_box_text(vis, (x1, y1, x2, y2), label)
detections.append({"box_xyxy":[x1,y1,x2,y2],"det_conf":float(c),"ocr_text":txt,"ocr_conf":float(s)})
dt_ms = int((time.time() - t0) * 1000)
return vis, detections, (w, h), dt_ms
def bgr_to_jpeg_base64(bgr):
ok, buf = cv2.imencode(".jpg", bgr, [int(cv2.IMWRITE_JPEG_QUALITY), 90])
if not ok:
return None
return base64.b64encode(buf.tobytes()).decode("ascii")
def pil_to_bgr(pil_img: Image.Image) -> np.ndarray:
if pil_img.mode not in ("RGB", "RGBA"):
pil_img = pil_img.convert("RGB")
arr = np.array(pil_img)
if arr.ndim == 2:
arr = np.stack([arr]*3, axis=-1)
if arr.shape[2] == 4:
arr = arr[:, :, :3]
return cv2.cvtColor(arr, cv2.COLOR_RGB2BGR)
def decode_bytes_to_bgr(data: bytes, content_type: str = "") -> np.ndarray:
# 1) OpenCV rápido
arr = np.frombuffer(data, np.uint8)
bgr = cv2.imdecode(arr, cv2.IMREAD_COLOR)
if bgr is not None:
return bgr
# 2) Fallback PIL (con HEIC soportado por pillow-heif)
try:
with Image.open(io.BytesIO(data)) as im:
return pil_to_bgr(im)
except Exception as e:
raise ValueError(f"No pude decodificar la imagen ({content_type}): {e}")
def load_image_from_url(url: str) -> np.ndarray:
ssl._create_default_https_context = ssl._create_unverified_context
req = urllib.request.Request(url, headers={"User-Agent": "Mozilla/5.0"})
with urllib.request.urlopen(req, timeout=20) as r:
data = r.read()
return decode_bytes_to_bgr(data, content_type=r.headers.get("Content-Type",""))
def load_image_from_b64(b64_or_data_url: str) -> np.ndarray:
s = b64_or_data_url
if s.startswith("data:"):
s = s.split(",", 1)[1]
raw = base64.b64decode(s)
return decode_bytes_to_bgr(raw, content_type="base64")
# --- FastAPI ---
app = FastAPI(title="Plates API (HF Space)")
ALLOWED = [
"http://localhost:5173", "http://127.0.0.1:5173",
"https://www.omar-cruz.com", "https://omar-cruz.com",
]
app.add_middleware(
CORSMiddleware,
allow_origins=ALLOWED,
allow_origin_regex=r"^https?://([a-z0-9-]+\.)*hf\.space$",
allow_credentials=False,
allow_methods=["*"],
allow_headers=["*"],
)
class Detection(BaseModel):
box_xyxy: List[int]
det_conf: float
ocr_text: str = ""
ocr_conf: float = 0.0
class DetectResponse(BaseModel):
detections: List[Detection]
count: int
width: int
height: int
time_ms: int
annotated_image_b64: Optional[str] = None
class DetectRequest(BaseModel):
image_url: Optional[str] = None
image_b64: Optional[str] = None
conf: float = Field(0.25, ge=0.05, le=0.95)
iou: float = Field(0.45, ge=0.1, le=0.9)
ocr: bool = True
return_image: bool = False
@app.get("/")
def health():
return {
"status": "ok",
"service": "plates-api",
"model": os.path.basename(WEIGHTS),
"ocr_gpu": torch.cuda.is_available(),
"allow_origins": ALLOWED,
}
@app.post("/detect", response_model=DetectResponse)
def detect(req: DetectRequest):
try:
if not req.image_url and not req.image_b64:
raise HTTPException(400, "Proporciona 'image_url' o 'image_b64'.")
bgr = load_image_from_url(req.image_url) if req.image_url else load_image_from_b64(req.image_b64)
vis, dets, (w, h), dt_ms = run_on_image_bgr(
bgr, conf=req.conf, iou=req.iou, with_ocr=req.ocr, annotate=req.return_image
)
b64 = bgr_to_jpeg_base64(vis) if req.return_image else None
return DetectResponse(
detections=dets, count=len(dets), width=w, height=h, time_ms=dt_ms,
annotated_image_b64=b64
)
except HTTPException:
raise
except Exception as e:
raise HTTPException(500, f"Error procesando la imagen: {e}")
@app.post("/detect_upload", response_model=DetectResponse)
async def detect_upload(
image: UploadFile = File(...),
conf: float = Form(0.25),
iou: float = Form(0.45),
ocr: bool = Form(True),
return_image: bool = Form(False),
):
try:
data = await image.read()
if not data:
raise HTTPException(400, "Archivo vacío.")
bgr = decode_bytes_to_bgr(data, content_type=image.content_type or image.filename)
if bgr is None:
# si llega aquí es que ni cv2 ni PIL pudieron
raise HTTPException(415, f"Formato no soportado: {image.content_type or image.filename}")
vis, dets, (w, h), dt_ms = run_on_image_bgr(
bgr, conf=conf, iou=iou, with_ocr=ocr, annotate=return_image
)
b64 = bgr_to_jpeg_base64(vis) if return_image else None
return DetectResponse(
detections=dets, count=len(dets), width=w, height=h, time_ms=dt_ms,
annotated_image_b64=b64
)
except HTTPException:
raise
except Exception as e:
raise HTTPException(500, f"Error procesando la imagen: {e}")
@app.on_event("startup")
def _warmup():
import numpy as np, cv2
dummy = np.zeros((512, 512, 3), dtype=np.uint8)
try: _ = yolo.predict(dummy, conf=0.25, iou=0.45, imgsz=512, verbose=False)
except Exception as e: print("Warmup YOLO:", e)
try: _ = reader.readtext(cv2.cvtColor(dummy, cv2.COLOR_BGR2GRAY), detail=0)
except Exception as e: print("Warmup EasyOCR:", e) |