File size: 2,108 Bytes
4dd6a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---

title: Farm Object Detection API
emoji: πŸ”
colorFrom: blue
colorTo: indigo
sdk: gradio
sdk_version: 4.28.3
app_file: app.py
pinned: false
license: apache-2.0
short_description: Object detection for farm equipment, crops, and workers
---


# πŸ” Farm Object Detection API

High-performance object detection for agricultural environments using RT-DETR models.

## 🎯 Capabilities
- **Farm Equipment Detection**: Tractors, harvesters, tools
- **Crop Counting**: Automated inventory of plants and produce
- **Worker Safety**: Personnel detection and activity monitoring
- **Animal Detection**: Livestock and wildlife identification

## πŸ€– Models
- **RT-DETR R18VD**: Lightweight, fast inference (15-30 FPS)
- **RT-DETR R34VD**: Balanced performance and accuracy
- **RT-DETR R50VD**: High accuracy for detailed analysis

## πŸ“‘ API Usage

### Python
```python

import requests

import base64



def detect_objects(image_path, model="r50vd"):

    with open(image_path, "rb") as f:

        image_b64 = base64.b64encode(f.read()).decode()

    

    response = requests.post(

        "https://YOUR-USERNAME-farm-object-detection.hf.space/api/predict",

        json={"data": [image_b64, model]}

    )

    return response.json()



result = detect_objects("farm_image.jpg")

print(result)

```

### JavaScript
```javascript

async function detectObjects(imageFile, model = 'r50vd') {

    const base64 = await fileToBase64(imageFile);

    

    const response = await fetch(

        'https://YOUR-USERNAME-farm-object-detection.hf.space/api/predict',

        {

            method: 'POST',

            headers: { 'Content-Type': 'application/json' },

            body: JSON.stringify({ data: [base64, model] })

        }

    );

    

    return await response.json();

}

```

## πŸ“Š Response Format
```json

{

  "objects_detected": 12,

  "detections": [

    {

      "class": "tractor",

      "confidence": 0.95,

      "bbox": [100, 150, 400, 350],

      "area": 75000

    }

  ],

  "processing_time": 0.8,

  "model_used": "rtdetr_r50vd"

}

```