File size: 7,346 Bytes
4dd6a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
"""

Farm Object Detection API - Gradio Interface

RT-DETR models for agricultural object detection

"""

import gradio as gr
import torch
import cv2
import numpy as np
from PIL import Image
import json
import base64
import io
import time
from typing import List, Dict, Any

# Import RT-DETR
try:
    from transformers import RTDetrForObjectDetection, RTDetrImageProcessor
    MODELS_AVAILABLE = True
except ImportError:
    MODELS_AVAILABLE = False

class ObjectDetectionAPI:
    def __init__(self):
        self.models = {}
        self.processors = {}
        self.model_configs = {
            "r18vd": "PekingU/rtdetr_r18vd",
            "r34vd": "PekingU/rtdetr_r34vd", 
            "r50vd": "PekingU/rtdetr_r50vd"
        }
        
        if MODELS_AVAILABLE:
            self.load_models()
    
    def load_models(self):
        """Load RT-DETR models"""
        for model_key, model_name in self.model_configs.items():
            try:
                print(f"Loading {model_name}...")
                processor = RTDetrImageProcessor.from_pretrained(model_name)
                model = RTDetrForObjectDetection.from_pretrained(model_name)
                
                self.processors[model_key] = processor
                self.models[model_key] = model
                print(f"βœ… {model_name} loaded successfully")
            except Exception as e:
                print(f"❌ Failed to load {model_name}: {e}")
    
    def detect_objects(self, image: Image.Image, model_key: str = "r50vd") -> Dict[str, Any]:
        """Detect objects in image using RT-DETR"""
        if not MODELS_AVAILABLE or model_key not in self.models:
            return {"error": "Model not available"}
        
        start_time = time.time()
        
        try:
            # Preprocess image
            processor = self.processors[model_key]
            model = self.models[model_key]
            
            inputs = processor(images=image, return_tensors="pt")
            
            # Run inference
            with torch.no_grad():
                outputs = model(**inputs)
            
            # Post-process results
            target_sizes = torch.tensor([image.size[::-1]])
            results = processor.post_process_object_detection(
                outputs, threshold=0.3, target_sizes=target_sizes
            )[0]
            
            # Format detections
            detections = []
            for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
                if score > 0.3:  # Confidence threshold
                    detections.append({
                        "class": model.config.id2label[label.item()],
                        "confidence": float(score),
                        "bbox": [float(x) for x in box],
                        "area": float((box[2] - box[0]) * (box[3] - box[1]))
                    })
            
            processing_time = time.time() - start_time
            
            return {
                "objects_detected": len(detections),
                "detections": detections,
                "processing_time": round(processing_time, 2),
                "model_used": f"rtdetr_{model_key}"
            }
            
        except Exception as e:
            return {"error": str(e)}
    
    def draw_detections(self, image: Image.Image, detections: List[Dict]) -> Image.Image:
        """Draw bounding boxes on image"""
        img_array = np.array(image)
        
        for det in detections:
            bbox = det["bbox"]
            x1, y1, x2, y2 = map(int, bbox)
            
            # Draw bounding box
            cv2.rectangle(img_array, (x1, y1), (x2, y2), (0, 255, 0), 2)
            
            # Draw label
            label = f"{det['class']}: {det['confidence']:.2f}"
            cv2.putText(img_array, label, (x1, y1-10), 
                       cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
        
        return Image.fromarray(img_array)

# Initialize API
api = ObjectDetectionAPI()

def predict_objects(image, model_choice):
    """Gradio prediction function"""
    if image is None:
        return None, "Please upload an image"
    
    # Convert to PIL Image
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    
    # Run detection
    results = api.detect_objects(image, model_choice)
    
    if "error" in results:
        return None, f"Error: {results['error']}"
    
    # Draw detections
    annotated_image = api.draw_detections(image, results["detections"])
    
    # Format results text
    results_text = f"""

πŸ” **Detection Results**

- **Objects detected**: {results['objects_detected']}

- **Processing time**: {results['processing_time']}s

- **Model used**: {results['model_used']}



**Detections**:

"""
    
    for i, det in enumerate(results["detections"][:10], 1):  # Show top 10
        results_text += f"\n{i}. **{det['class']}** (confidence: {det['confidence']:.2f})"
    
    return annotated_image, results_text

def predict_api(image_b64, model_choice):
    """API endpoint function"""
    try:
        # Decode base64 image
        image_data = base64.b64decode(image_b64)
        image = Image.open(io.BytesIO(image_data))
        
        # Run detection
        results = api.detect_objects(image, model_choice)
        return results
        
    except Exception as e:
        return {"error": str(e)}

# Gradio Interface
with gr.Blocks(title="πŸ” Farm Object Detection API") as app:
    gr.Markdown("# πŸ” Farm Object Detection API")
    gr.Markdown("Detect farm equipment, crops, workers, and animals using RT-DETR models")
    
    with gr.Tab("πŸ–ΌοΈ Image Analysis"):
        with gr.Row():
            with gr.Column():
                image_input = gr.Image(type="pil", label="Upload Farm Image")
                model_choice = gr.Dropdown(
                    choices=["r18vd", "r34vd", "r50vd"],
                    value="r50vd",
                    label="Select Model"
                )
                detect_btn = gr.Button("πŸ” Detect Objects", variant="primary")
            
            with gr.Column():
                output_image = gr.Image(label="Detected Objects")
                results_text = gr.Textbox(label="Detection Results", lines=10)
        
        detect_btn.click(
            predict_objects,
            inputs=[image_input, model_choice],
            outputs=[output_image, results_text]
        )
    
    with gr.Tab("πŸ“‘ API Usage"):
        gr.Markdown("""

## πŸš€ API Endpoint



**POST** `/api/predict`



### Request Format

```json

{

  "data": ["<base64_image>", "<model_choice>"]

}

```



### Response Format

```json

{

  "objects_detected": 5,

  "detections": [

    {

      "class": "tractor",

      "confidence": 0.95,

      "bbox": [100, 150, 400, 350],

      "area": 75000

    }

  ],

  "processing_time": 0.8,

  "model_used": "rtdetr_r50vd"

}

```



### Model Options

- **r18vd**: Fast inference (recommended for real-time)

- **r34vd**: Balanced performance  

- **r50vd**: High accuracy (recommended for analysis)

        """)

if __name__ == "__main__":
    app.launch()