Spaces:
Running
Running
File size: 6,922 Bytes
ffb4e02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import io
import os
import tempfile
from typing import Tuple, Optional
import gradio as gr
import numpy as np
import soundfile as sf
import torch
import torchaudio
from fastapi import FastAPI, File, UploadFile, Query, Response
from fastapi.responses import StreamingResponse
from speechbrain.pretrained import SpectralMaskEnhancement
# -----------------------------
# Model: SpeechBrain MetricGAN+
# -----------------------------
_ENHANCER: Optional[SpectralMaskEnhancement] = None
_DEVICE = "cpu"
def _get_enhancer() -> SpectralMaskEnhancement:
global _ENHANCER
if _ENHANCER is None:
# Downloads once and caches in the Space
_ENHANCER = SpectralMaskEnhancement.from_hparams(
source="speechbrain/metricgan-plus-voicebank",
savedir="pretrained/metricgan_plus_voicebank",
run_opts={"device": _DEVICE},
)
return _ENHANCER
# -----------------------------
# Audio helpers
# -----------------------------
def _to_mono(wav: np.ndarray) -> np.ndarray:
"""Ensure mono shape [T]."""
if wav.ndim == 1:
return wav.astype(np.float32)
# shape [T, C] or [C, T]
if wav.shape[0] < wav.shape[1]:
# likely [T, C]
return wav.mean(axis=1).astype(np.float32)
else:
# likely [C, T]
return wav.mean(axis=0).astype(np.float32)
def _resample_torch(wav: torch.Tensor, sr_in: int, sr_out: int) -> torch.Tensor:
if sr_in == sr_out:
return wav
return torchaudio.functional.resample(wav, sr_in, sr_out)
def _highpass(wav: torch.Tensor, sr: int, cutoff_hz: float) -> torch.Tensor:
if cutoff_hz is None or cutoff_hz <= 0:
return wav
# 2nd-order Butterworth-ish highpass via biquad
return torchaudio.functional.highpass_biquad(wav, sr, cutoff_hz)
def _presence_boost(wav: torch.Tensor, sr: int, gain_db: float) -> torch.Tensor:
"""Simple presence (peaking) EQ around 4.5 kHz."""
if abs(gain_db) < 1e-6:
return wav
center = 4500.0 # presence band
q = 0.707 # wide-ish
return torchaudio.functional.equalizer_biquad(wav, sr, center, q, gain_db)
def _limit_peak(wav: torch.Tensor, target_dbfs: float = -1.0) -> torch.Tensor:
"""Peak-normalize to target dBFS (default -1 dB)."""
target_amp = 10.0 ** (target_dbfs / 20.0)
peak = torch.max(torch.abs(wav)).item()
if peak > 0:
scale = min(1.0, target_amp / peak)
wav = wav * scale
return torch.clamp(wav, -1.0, 1.0)
def _enhance_numpy_audio(
audio: Tuple[int, np.ndarray],
presence_db: float = 3.0,
lowcut_hz: float = 75.0,
out_sr: Optional[int] = None,
) -> Tuple[int, np.ndarray]:
"""
Core pipeline used by both Gradio UI and raw FastAPI route.
Input: (sr, np.float32 [T] or [T,C])
Returns: (sr_out, np.float32 [T])
"""
sr_in, wav_np = audio
wav_mono = _to_mono(wav_np)
wav_t = torch.from_numpy(wav_mono).unsqueeze(0) # [1, T]
# MetricGAN+ expects 16 kHz mono
enh = _get_enhancer()
wav_16k = _resample_torch(wav_t, sr_in, 16000)
# Enhance via file path API for maximum compatibility
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_in:
sf.write(tmp_in.name, wav_16k.squeeze(0).numpy(), 16000, subtype="PCM_16")
tmp_in.flush()
# Enhance; returns torch.Tensor [1, T]
clean = enh.enhance_file(tmp_in.name)
try:
os.remove(tmp_in.name)
except Exception:
pass
# Optional polish: high-pass & presence EQ
clean = _highpass(clean, 16000, lowcut_hz)
clean = _presence_boost(clean, 16000, presence_db)
# Peak limiting to avoid inter-sample clip
clean = _limit_peak(clean, target_dbfs=-1.0)
# Resample back
sr_out = sr_in if (out_sr is None or out_sr <= 0) else int(out_sr)
clean_out = _resample_torch(clean, 16000, sr_out).squeeze(0).numpy().astype(
np.float32
)
return sr_out, clean_out
def _wav_bytes(sr: int, mono_f32: np.ndarray) -> bytes:
"""Encode a mono float32 array as 16-bit PCM WAV into bytes."""
buf = io.BytesIO()
sf.write(buf, mono_f32, sr, subtype="PCM_16", format="WAV")
buf.seek(0)
return buf.read()
# -----------------------------
# FastAPI app with raw endpoint
# -----------------------------
app = FastAPI(title="Voice Clarity Booster (MetricGAN+)", version="1.0.0")
@app.post("/enhance")
async def enhance_endpoint(
file: UploadFile = File(..., description="Audio file (wav/mp3/ogg etc.)"),
presence_db: float = Query(3.0, ge=-12.0, le=12.0, description="Presence EQ gain in dB"),
lowcut_hz: float = Query(75.0, ge=0.0, le=200.0, description="High-pass cutoff in Hz"),
output_sr: int = Query(0, ge=0, description="0=keep original, or set to e.g. 44100/48000"),
):
"""Raw REST endpoint. Returns enhanced audio as audio/wav bytes."""
data = await file.read()
# Decode with soundfile
wav_np, sr_in = sf.read(io.BytesIO(data), always_2d=False, dtype="float32")
sr_out, enhanced = _enhance_numpy_audio(
(sr_in, wav_np),
presence_db=presence_db,
lowcut_hz=lowcut_hz,
out_sr=output_sr if output_sr > 0 else None,
)
wav_bytes = _wav_bytes(sr_out, enhanced)
headers = {"Content-Disposition": f'attachment; filename="{os.path.splitext(file.filename or "audio")[0]}_enhanced.wav"'}
return StreamingResponse(io.BytesIO(wav_bytes), media_type="audio/wav", headers=headers)
# -----------------------------
# Gradio UI (for quick testing)
# -----------------------------
def gradio_enhance(
audio: Tuple[int, np.ndarray],
presence_db: float,
lowcut_hz: float,
output_sr: str,
):
if audio is None:
return None
out_sr = None
if output_sr in {"44100", "48000"}:
out_sr = int(output_sr)
# "Original" -> None
sr_out, enhanced = _enhance_numpy_audio(
audio, presence_db=float(presence_db), lowcut_hz=float(lowcut_hz), out_sr=out_sr
)
return (sr_out, enhanced)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("## Voice Clarity Booster (MetricGAN+)")
with gr.Row():
with gr.Column():
in_audio = gr.Audio(sources=["upload", "microphone"], type="numpy", label="Input")
presence = gr.Slider(-12, 12, value=3, step=0.5, label="Presence Boost (dB)")
lowcut = gr.Slider(0, 200, value=75, step=5, label="Low-Cut (Hz)")
out_sr = gr.Radio(
choices=["Original", "44100", "48000"],
value="Original",
label="Output Sample Rate",
)
btn = gr.Button("Enhance")
with gr.Column():
out_audio = gr.Audio(type="numpy", label="Enhanced")
btn.click(gradio_enhance, inputs=[in_audio, presence, lowcut, out_sr], outputs=[out_audio])
# Mount Gradio at root path and keep FastAPI for /enhance
app = gr.mount_gradio_app(app, demo, path="/")
|