Spaces:
Sleeping
Sleeping
manager tools
Browse files- app_agents/manager_agent.py +3 -11
- app_tools/text_inspector.py +92 -0
- app_tools/visual_qa.py +252 -0
app_agents/manager_agent.py
CHANGED
|
@@ -2,21 +2,13 @@ import os
|
|
| 2 |
from smolagents.utils import encode_image_base64, make_image_url
|
| 3 |
from smolagents import OpenAIServerModel, CodeAgent, InferenceClientModel
|
| 4 |
|
| 5 |
-
# from gradio_tools import (StableDiffusionTool, ImageCaptioningTool, StableDiffusionPromptGeneratorTool,
|
| 6 |
-
# TextToVideoTool)
|
| 7 |
-
# from langchain.agents import initialize_agent
|
| 8 |
-
# from langchain.memory import ConversationBufferMemory
|
| 9 |
-
|
| 10 |
import app_agents.web_agent as web_agent
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
# tools = [StableDiffusionTool().langchain, ImageCaptioningTool().langchain,
|
| 14 |
-
# StableDiffusionPromptGeneratorTool().langchain, TextToVideoTool().langchain]
|
| 15 |
-
# memory = ConversationBufferMemory(memory_key="chat_history")
|
| 16 |
|
| 17 |
manager_agent = CodeAgent(
|
| 18 |
model=InferenceClientModel("deepseek-ai/DeepSeek-R1", provider="together", max_tokens=8096),
|
| 19 |
-
tools=[],
|
| 20 |
planning_interval=4,
|
| 21 |
verbosity_level=2,
|
| 22 |
managed_agents=[web_agent.web_agent],
|
|
|
|
| 2 |
from smolagents.utils import encode_image_base64, make_image_url
|
| 3 |
from smolagents import OpenAIServerModel, CodeAgent, InferenceClientModel
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import app_agents.web_agent as web_agent
|
| 6 |
+
import app_tools.text_inspector
|
| 7 |
+
import app_tools.visual_qa
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
manager_agent = CodeAgent(
|
| 10 |
model=InferenceClientModel("deepseek-ai/DeepSeek-R1", provider="together", max_tokens=8096),
|
| 11 |
+
tools=[app_tools.text_inspector.TextInspectorTool(), app_tools.visual_qa.VisualQATool()],
|
| 12 |
planning_interval=4,
|
| 13 |
verbosity_level=2,
|
| 14 |
managed_agents=[web_agent.web_agent],
|
app_tools/text_inspector.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dotenv import load_dotenv
|
| 2 |
+
from typing import Optional
|
| 3 |
+
from smolagents import InferenceClientModel, Tool
|
| 4 |
+
|
| 5 |
+
from app_tools.mdconvert import MarkdownConverter
|
| 6 |
+
|
| 7 |
+
load_dotenv()
|
| 8 |
+
text_limit = 70000
|
| 9 |
+
websurfer_llm_engine = InferenceClientModel(
|
| 10 |
+
model="meta-llama/Meta-Llama-3.1-70B-Instruct",
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
class TextInspectorTool(Tool):
|
| 14 |
+
name = "inspect_file_as_text"
|
| 15 |
+
description = """
|
| 16 |
+
You cannot load files yourself: instead call this tool to read a file as markdown text and ask questions about it.
|
| 17 |
+
This tool handles the following file extensions: [".html", ".htm", ".xlsx", ".pptx", ".wav", ".mp3", ".flac", ".pdf", ".docx"], and all other types of text files. IT DOES NOT HANDLE IMAGES."""
|
| 18 |
+
|
| 19 |
+
inputs = {
|
| 20 |
+
"question": {
|
| 21 |
+
"description": "[Optional]: Your question, as a natural language sentence. Provide as much context as possible. Do not pass this parameter if you just want to directly return the content of the file.",
|
| 22 |
+
"type": "string",
|
| 23 |
+
"nullable": True,
|
| 24 |
+
},
|
| 25 |
+
"file_path": {
|
| 26 |
+
"description": "The path to the file you want to read as text. Must be a '.something' file, like '.pdf'. If it is an image, use the visualizer tool instead! DO NOT USE THIS TOOL FOR A WEBPAGE: use the search tool instead!",
|
| 27 |
+
"type": "string",
|
| 28 |
+
},
|
| 29 |
+
}
|
| 30 |
+
output_type = "string"
|
| 31 |
+
md_converter = MarkdownConverter()
|
| 32 |
+
|
| 33 |
+
def forward_initial_exam_mode(self, file_path, question):
|
| 34 |
+
result = self.md_converter.convert(file_path)
|
| 35 |
+
|
| 36 |
+
if file_path[-4:] in ['.png', '.jpg']:
|
| 37 |
+
raise Exception("Cannot use inspect_file_as_text tool with images: use visualizer instead!")
|
| 38 |
+
|
| 39 |
+
if ".zip" in file_path:
|
| 40 |
+
return result.text_content
|
| 41 |
+
|
| 42 |
+
if not question:
|
| 43 |
+
return result.text_content
|
| 44 |
+
|
| 45 |
+
messages = [
|
| 46 |
+
{
|
| 47 |
+
"role": MessageRole.SYSTEM,
|
| 48 |
+
"content": "Here is a file:\n### "
|
| 49 |
+
+ str(result.title)
|
| 50 |
+
+ "\n\n"
|
| 51 |
+
+ result.text_content[:text_limit],
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"role": MessageRole.USER,
|
| 55 |
+
"content": question,
|
| 56 |
+
},
|
| 57 |
+
]
|
| 58 |
+
return websurfer_llm_engine(messages)
|
| 59 |
+
|
| 60 |
+
def forward(self, file_path, question: Optional[str] = None) -> str:
|
| 61 |
+
|
| 62 |
+
result = self.md_converter.convert(file_path)
|
| 63 |
+
|
| 64 |
+
if file_path[-4:] in ['.png', '.jpg']:
|
| 65 |
+
raise Exception("Cannot use inspect_file_as_text tool with images: use visualizer instead!")
|
| 66 |
+
|
| 67 |
+
if ".zip" in file_path:
|
| 68 |
+
return result.text_content
|
| 69 |
+
|
| 70 |
+
if not question:
|
| 71 |
+
return result.text_content
|
| 72 |
+
|
| 73 |
+
messages = [
|
| 74 |
+
{
|
| 75 |
+
"role": MessageRole.SYSTEM,
|
| 76 |
+
"content": "You will have to write a short caption for this file, then answer this question:"
|
| 77 |
+
+ question,
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"role": MessageRole.USER,
|
| 81 |
+
"content": "Here is the complete file:\n### "
|
| 82 |
+
+ str(result.title)
|
| 83 |
+
+ "\n\n"
|
| 84 |
+
+ result.text_content[:text_limit],
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"role": MessageRole.USER,
|
| 88 |
+
"content": "Now answer the question below. Use these three headings: '1. Short answer', '2. Extremely detailed answer', '3. Additional Context on the document and question asked'."
|
| 89 |
+
+ question,
|
| 90 |
+
},
|
| 91 |
+
]
|
| 92 |
+
return websurfer_llm_engine(messages)
|
app_tools/visual_qa.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import base64
|
| 3 |
+
from io import BytesIO
|
| 4 |
+
import json
|
| 5 |
+
import os
|
| 6 |
+
import requests
|
| 7 |
+
from typing import Optional
|
| 8 |
+
from huggingface_hub import InferenceClient
|
| 9 |
+
from transformers import AutoProcessor
|
| 10 |
+
from smolagents import Tool
|
| 11 |
+
import uuid
|
| 12 |
+
import mimetypes
|
| 13 |
+
from dotenv import load_dotenv
|
| 14 |
+
|
| 15 |
+
load_dotenv(override=True)
|
| 16 |
+
|
| 17 |
+
idefics_processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b-chatty")
|
| 18 |
+
|
| 19 |
+
def process_images_and_text(image_path, query, client):
|
| 20 |
+
messages = [
|
| 21 |
+
{
|
| 22 |
+
"role": "user", "content": [
|
| 23 |
+
{"type": "image"},
|
| 24 |
+
{"type": "text", "text": query},
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
]
|
| 28 |
+
|
| 29 |
+
prompt_with_template = idefics_processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 30 |
+
|
| 31 |
+
# load images from local directory
|
| 32 |
+
|
| 33 |
+
# encode images to strings which can be sent to the endpoint
|
| 34 |
+
def encode_local_image(image_path):
|
| 35 |
+
# load image
|
| 36 |
+
image = Image.open(image_path).convert('RGB')
|
| 37 |
+
|
| 38 |
+
# Convert the image to a base64 string
|
| 39 |
+
buffer = BytesIO()
|
| 40 |
+
image.save(buffer, format="JPEG") # Use the appropriate format (e.g., JPEG, PNG)
|
| 41 |
+
base64_image = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
| 42 |
+
|
| 43 |
+
# add string formatting required by the endpoint
|
| 44 |
+
image_string = f"data:image/jpeg;base64,{base64_image}"
|
| 45 |
+
|
| 46 |
+
return image_string
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
image_string = encode_local_image(image_path)
|
| 50 |
+
prompt_with_images = prompt_with_template.replace("<image>", " ").format(image_string)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
payload = {
|
| 54 |
+
"inputs": prompt_with_images,
|
| 55 |
+
"parameters": {
|
| 56 |
+
"return_full_text": False,
|
| 57 |
+
"max_new_tokens": 200,
|
| 58 |
+
}
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
return json.loads(client.post(json=payload).decode())[0]
|
| 62 |
+
|
| 63 |
+
# Function to encode the image
|
| 64 |
+
def encode_image(image_path):
|
| 65 |
+
if image_path.startswith("http"):
|
| 66 |
+
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
|
| 67 |
+
request_kwargs = {
|
| 68 |
+
"headers": {"User-Agent": user_agent},
|
| 69 |
+
"stream": True,
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
# Send a HTTP request to the URL
|
| 73 |
+
response = requests.get(image_path, **request_kwargs)
|
| 74 |
+
response.raise_for_status()
|
| 75 |
+
content_type = response.headers.get("content-type", "")
|
| 76 |
+
|
| 77 |
+
extension = mimetypes.guess_extension(content_type)
|
| 78 |
+
if extension is None:
|
| 79 |
+
extension = ".download"
|
| 80 |
+
|
| 81 |
+
fname = str(uuid.uuid4()) + extension
|
| 82 |
+
download_path = os.path.abspath(os.path.join("downloads", fname))
|
| 83 |
+
|
| 84 |
+
with open(download_path, "wb") as fh:
|
| 85 |
+
for chunk in response.iter_content(chunk_size=512):
|
| 86 |
+
fh.write(chunk)
|
| 87 |
+
|
| 88 |
+
image_path = download_path
|
| 89 |
+
|
| 90 |
+
with open(image_path, "rb") as image_file:
|
| 91 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
| 92 |
+
|
| 93 |
+
headers = {
|
| 94 |
+
"Content-Type": "application/json",
|
| 95 |
+
"Authorization": f"Bearer {os.getenv('OPENAI_API_KEY')}"
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def resize_image(image_path):
|
| 100 |
+
img = Image.open(image_path)
|
| 101 |
+
width, height = img.size
|
| 102 |
+
img = img.resize((int(width / 2), int(height / 2)))
|
| 103 |
+
new_image_path = f"resized_{image_path}"
|
| 104 |
+
img.save(new_image_path)
|
| 105 |
+
return new_image_path
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class VisualQATool(Tool):
|
| 109 |
+
name = "visualizer"
|
| 110 |
+
description = "A tool that can answer questions about attached images."
|
| 111 |
+
inputs = {
|
| 112 |
+
"question": {
|
| 113 |
+
"description": "the question to answer",
|
| 114 |
+
"type": "string",
|
| 115 |
+
"nullable": True,
|
| 116 |
+
},
|
| 117 |
+
"image_path": {
|
| 118 |
+
"description": "The path to the image on which to answer the question",
|
| 119 |
+
"type": "string",
|
| 120 |
+
},
|
| 121 |
+
}
|
| 122 |
+
output_type = "string"
|
| 123 |
+
|
| 124 |
+
client = InferenceClient("HuggingFaceM4/idefics2-8b-chatty")
|
| 125 |
+
|
| 126 |
+
def forward(self, image_path: str, question: Optional[str] = None) -> str:
|
| 127 |
+
add_note = False
|
| 128 |
+
if not question:
|
| 129 |
+
add_note = True
|
| 130 |
+
question = "Please write a detailed caption for this image."
|
| 131 |
+
try:
|
| 132 |
+
output = process_images_and_text(image_path, question, self.client)
|
| 133 |
+
except Exception as e:
|
| 134 |
+
print(e)
|
| 135 |
+
if "Payload Too Large" in str(e):
|
| 136 |
+
new_image_path = resize_image(image_path)
|
| 137 |
+
output = process_images_and_text(new_image_path, question, self.client)
|
| 138 |
+
|
| 139 |
+
if add_note:
|
| 140 |
+
output = f"You did not provide a particular question, so here is a detailed caption for the image: {output}"
|
| 141 |
+
|
| 142 |
+
return output
|
| 143 |
+
|
| 144 |
+
# ////////////////////////////////////////////////////////////////////////
|
| 145 |
+
# import base64
|
| 146 |
+
# import json
|
| 147 |
+
# import os
|
| 148 |
+
# import uuid
|
| 149 |
+
# import mimetypes
|
| 150 |
+
# from io import BytesIO
|
| 151 |
+
# from typing import Optional
|
| 152 |
+
# from PIL import Image
|
| 153 |
+
# from dotenv import load_dotenv
|
| 154 |
+
# import requests
|
| 155 |
+
# from smolagents import Tool
|
| 156 |
+
# from huggingface_hub import InferenceClient
|
| 157 |
+
|
| 158 |
+
# load_dotenv()
|
| 159 |
+
|
| 160 |
+
# # === UTILS ===
|
| 161 |
+
|
| 162 |
+
# def encode_local_image(image_path):
|
| 163 |
+
# image = Image.open(image_path).convert("RGB")
|
| 164 |
+
# buffer = BytesIO()
|
| 165 |
+
# image.save(buffer, format="JPEG")
|
| 166 |
+
# base64_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
| 167 |
+
# return f"data:image/jpeg;base64,{base64_image}"
|
| 168 |
+
|
| 169 |
+
# def encode_image(image_path):
|
| 170 |
+
# if image_path.startswith("http"):
|
| 171 |
+
# user_agent = (
|
| 172 |
+
# "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 "
|
| 173 |
+
# "(KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36"
|
| 174 |
+
# )
|
| 175 |
+
# response = requests.get(image_path, headers={"User-Agent": user_agent}, stream=True)
|
| 176 |
+
# response.raise_for_status()
|
| 177 |
+
|
| 178 |
+
# ext = mimetypes.guess_extension(response.headers.get("content-type", ""))
|
| 179 |
+
# fname = str(uuid.uuid4()) + (ext or ".jpg")
|
| 180 |
+
# os.makedirs("downloads", exist_ok=True)
|
| 181 |
+
# local_path = os.path.join("downloads", fname)
|
| 182 |
+
|
| 183 |
+
# with open(local_path, "wb") as f:
|
| 184 |
+
# for chunk in response.iter_content(chunk_size=1024):
|
| 185 |
+
# f.write(chunk)
|
| 186 |
+
|
| 187 |
+
# image_path = local_path
|
| 188 |
+
|
| 189 |
+
# with open(image_path, "rb") as img:
|
| 190 |
+
# return base64.b64encode(img.read()).decode("utf-8")
|
| 191 |
+
|
| 192 |
+
# def resize_image(image_path):
|
| 193 |
+
# img = Image.open(image_path)
|
| 194 |
+
# width, height = img.size
|
| 195 |
+
# img = img.resize((int(width / 2), int(height / 2)))
|
| 196 |
+
# new_path = f"resized_{os.path.basename(image_path)}"
|
| 197 |
+
# img.save(new_path)
|
| 198 |
+
# return new_path
|
| 199 |
+
|
| 200 |
+
# # === IDEFICS2 Tool ===
|
| 201 |
+
|
| 202 |
+
# class VisualQATool(Tool):
|
| 203 |
+
# name = "visualizer"
|
| 204 |
+
# description = "A tool that can answer questions about attached images using IDEFICS2."
|
| 205 |
+
# inputs = {
|
| 206 |
+
# "question": {
|
| 207 |
+
# "description": "The question to answer",
|
| 208 |
+
# "type": "string",
|
| 209 |
+
# "nullable": True,
|
| 210 |
+
# },
|
| 211 |
+
# "image_path": {
|
| 212 |
+
# "description": "Path to the image (local or downloaded)",
|
| 213 |
+
# "type": "string",
|
| 214 |
+
# },
|
| 215 |
+
# }
|
| 216 |
+
# output_type = "string"
|
| 217 |
+
|
| 218 |
+
# client = InferenceClient("HuggingFaceM4/idefics2-8b-chatty")
|
| 219 |
+
|
| 220 |
+
# def forward(self, image_path: str, question: Optional[str] = None) -> str:
|
| 221 |
+
# add_note = False
|
| 222 |
+
# if not question:
|
| 223 |
+
# add_note = True
|
| 224 |
+
# question = "Please write a detailed caption for this image."
|
| 225 |
+
|
| 226 |
+
# image_string = encode_local_image(image_path)
|
| 227 |
+
# prompt = f"\n\n{question}"
|
| 228 |
+
|
| 229 |
+
# payload = {
|
| 230 |
+
# "inputs": prompt,
|
| 231 |
+
# "parameters": {
|
| 232 |
+
# "return_full_text": False,
|
| 233 |
+
# "max_new_tokens": 200,
|
| 234 |
+
# },
|
| 235 |
+
# }
|
| 236 |
+
|
| 237 |
+
# try:
|
| 238 |
+
# result = json.loads(self.client.post(json=payload).decode())[0]
|
| 239 |
+
# except Exception as e:
|
| 240 |
+
# if "Payload Too Large" in str(e):
|
| 241 |
+
# resized = resize_image(image_path)
|
| 242 |
+
# image_string = encode_local_image(resized)
|
| 243 |
+
# prompt = f"\n\n{question}"
|
| 244 |
+
# payload["inputs"] = prompt
|
| 245 |
+
# result = json.loads(self.client.post(json=payload).decode())[0]
|
| 246 |
+
# else:
|
| 247 |
+
# raise e
|
| 248 |
+
|
| 249 |
+
# return (
|
| 250 |
+
# f"You did not provide a particular question, so here is a detailed caption for the image: {result}"
|
| 251 |
+
# if add_note else result
|
| 252 |
+
# )
|