Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
from threading import Thread
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import spaces
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import torch
|
| 8 |
+
from transformers import (
|
| 9 |
+
AutoProcessor,
|
| 10 |
+
AutoModelForImageTextToText,
|
| 11 |
+
Qwen2_5_VLForConditionalGeneration,
|
| 12 |
+
TextIteratorStreamer,
|
| 13 |
+
)
|
| 14 |
+
MODEL_PATHS = {
|
| 15 |
+
"Model 3 (structured handwritting)": (
|
| 16 |
+
"Emeritus-21/Finetuned-full-HTR-model",
|
| 17 |
+
AutoModelForImageTextToText,
|
| 18 |
+
),
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
MAX_NEW_TOKENS_DEFAULT = 512
|
| 22 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
+
|
| 24 |
+
# ---------------------------
|
| 25 |
+
# Preload models at startup
|
| 26 |
+
# ---------------------------
|
| 27 |
+
_loaded_processors = {}
|
| 28 |
+
_loaded_models = {}
|
| 29 |
+
|
| 30 |
+
print("π Preloading models into GPU/CPU memory...")
|
| 31 |
+
|
| 32 |
+
for name, (repo_id, cls) in MODEL_PATHS.items():
|
| 33 |
+
try:
|
| 34 |
+
print(f"Loading {name} ...")
|
| 35 |
+
processor = AutoProcessor.from_pretrained(repo_id, trust_remote_code=True)
|
| 36 |
+
model = cls.from_pretrained(
|
| 37 |
+
repo_id,
|
| 38 |
+
trust_remote_code=True,
|
| 39 |
+
torch_dtype=torch.float16
|
| 40 |
+
).to(device).eval()
|
| 41 |
+
_loaded_processors[name] = processor
|
| 42 |
+
_loaded_models[name] = model
|
| 43 |
+
print(f"β
{name} ready.")
|
| 44 |
+
except Exception as e:
|
| 45 |
+
print(f"β οΈ Failed to load {name}: {e}")
|
| 46 |
+
|
| 47 |
+
# ---------------------------
|
| 48 |
+
# Warmup (GPU)
|
| 49 |
+
# ---------------------------
|
| 50 |
+
#@spaces.GPU
|
| 51 |
+
def warmup():
|
| 52 |
+
try:
|
| 53 |
+
default_model_choice = list(MODEL_PATHS.keys())[0]
|
| 54 |
+
processor = _loaded_processors[default_model_choice]
|
| 55 |
+
model = _loaded_models[default_model_choice]
|
| 56 |
+
|
| 57 |
+
messages = [{"role": "user", "content": [{"type": "text", "text": "Warmup."}]}]
|
| 58 |
+
chat_prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 59 |
+
inputs = processor(text=[chat_prompt], images=None, return_tensors="pt").to(device)
|
| 60 |
+
|
| 61 |
+
with torch.inference_mode():
|
| 62 |
+
_ = model.generate(**inputs, max_new_tokens=1)
|
| 63 |
+
|
| 64 |
+
return f"GPU warm and {default_model_choice} ready."
|
| 65 |
+
except Exception as e:
|
| 66 |
+
return f"Warmup skipped: {e}"
|
| 67 |
+
|
| 68 |
+
# ---------------------------
|
| 69 |
+
# OCR Function (RAW ONLY)
|
| 70 |
+
# ---------------------------
|
| 71 |
+
#@spaces.GPU
|
| 72 |
+
def ocr_image(image: Image.Image, model_choice: str, query: str = None,
|
| 73 |
+
max_new_tokens: int = MAX_NEW_TOKENS_DEFAULT,
|
| 74 |
+
temperature: float = 0.1, top_p: float = 1.0, top_k: int = 0, repetition_penalty: float = 1.0):
|
| 75 |
+
|
| 76 |
+
if image is None:
|
| 77 |
+
yield "Please upload an image."
|
| 78 |
+
return
|
| 79 |
+
|
| 80 |
+
if model_choice not in _loaded_models:
|
| 81 |
+
yield f"Invalid model: {model_choice}"
|
| 82 |
+
return
|
| 83 |
+
|
| 84 |
+
processor = _loaded_processors[model_choice]
|
| 85 |
+
model = _loaded_models[model_choice]
|
| 86 |
+
|
| 87 |
+
if query and query.strip():
|
| 88 |
+
prompt = query.strip()
|
| 89 |
+
else:
|
| 90 |
+
prompt = (
|
| 91 |
+
"You are a professional Handwritten OCR system.\n"
|
| 92 |
+
"TASK: Read the handwritten image and transcribe the text EXACTLY as written.\n"
|
| 93 |
+
"- Preserve original structure and line breaks.\n"
|
| 94 |
+
"- Keep spacing, bullet points, numbering, and indentation.\n"
|
| 95 |
+
"- Render tables as Markdown tables if present.\n"
|
| 96 |
+
"- Do NOT autocorrect spelling or grammar.\n"
|
| 97 |
+
"- Do NOT merge lines.\n"
|
| 98 |
+
"Return RAW transcription only."
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
messages = [{
|
| 102 |
+
"role": "user",
|
| 103 |
+
"content": [
|
| 104 |
+
{"type": "image", "image": image},
|
| 105 |
+
{"type": "text", "text": prompt}
|
| 106 |
+
]
|
| 107 |
+
}]
|
| 108 |
+
|
| 109 |
+
chat_prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 110 |
+
inputs = processor(text=[chat_prompt], images=[image], return_tensors="pt").to(device)
|
| 111 |
+
|
| 112 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 113 |
+
|
| 114 |
+
generation_kwargs = dict(
|
| 115 |
+
**inputs,
|
| 116 |
+
streamer=streamer,
|
| 117 |
+
max_new_tokens=max_new_tokens,
|
| 118 |
+
do_sample=False,
|
| 119 |
+
temperature=temperature,
|
| 120 |
+
top_p=top_p,
|
| 121 |
+
top_k=top_k,
|
| 122 |
+
repetition_penalty=repetition_penalty
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 126 |
+
thread.start()
|
| 127 |
+
|
| 128 |
+
buffer = ""
|
| 129 |
+
for new_text in streamer:
|
| 130 |
+
new_text = new_text.replace("<|im_end|>", "")
|
| 131 |
+
buffer += new_text
|
| 132 |
+
time.sleep(0.01)
|
| 133 |
+
yield buffer
|
| 134 |
+
|
| 135 |
+
# ---------------------------
|
| 136 |
+
# Gradio Interface
|
| 137 |
+
# ---------------------------
|
| 138 |
+
with gr.Blocks() as demo:
|
| 139 |
+
gr.Markdown("## wilson Handwritten OCR ")
|
| 140 |
+
|
| 141 |
+
model_choice = gr.Radio(
|
| 142 |
+
choices=list(MODEL_PATHS.keys()),
|
| 143 |
+
value=list(MODEL_PATHS.keys())[0],
|
| 144 |
+
label="Select OCR Model"
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
with gr.Tab("πΌ Image Inference"):
|
| 148 |
+
query_input = gr.Textbox(label="Custom Prompt (optional)", placeholder="Leave empty for RAW structured output")
|
| 149 |
+
image_input = gr.Image(type="pil", label="Upload Handwritten Image")
|
| 150 |
+
|
| 151 |
+
with gr.Accordion("βοΈ Advanced Options", open=False):
|
| 152 |
+
max_new_tokens = gr.Slider(1, 2048, value=MAX_NEW_TOKENS_DEFAULT, step=1, label="Max new tokens")
|
| 153 |
+
temperature = gr.Slider(0.1, 2.0, value=0.1, step=0.05, label="Temperature")
|
| 154 |
+
top_p = gr.Slider(0.05, 1.0, value=1.0, step=0.05, label="Top-p (nucleus)")
|
| 155 |
+
top_k = gr.Slider(0, 1000, value=0, step=1, label="Top-k")
|
| 156 |
+
repetition_penalty = gr.Slider(0.8, 2.0, value=1.0, step=0.05, label="Repetition penalty")
|
| 157 |
+
|
| 158 |
+
with gr.Row():
|
| 159 |
+
extract_btn = gr.Button("π€ Extract RAW Text", variant="primary")
|
| 160 |
+
clear_btn = gr.Button("π§Ή Clear")
|
| 161 |
+
|
| 162 |
+
raw_output = gr.Textbox(label="π RAW Structured Output (exact as written)", lines=18, show_copy_button=True)
|
| 163 |
+
|
| 164 |
+
extract_btn.click(
|
| 165 |
+
fn=ocr_image,
|
| 166 |
+
inputs=[image_input, model_choice, query_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 167 |
+
outputs=[raw_output],
|
| 168 |
+
api_name="ocr_image" # <--- THIS IS THE CRUCIAL FIX
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
clear_btn.click(
|
| 172 |
+
fn=lambda: ("", None, ""),
|
| 173 |
+
outputs=[raw_output, image_input, query_input]
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
if __name__ == "__main__":
|
| 177 |
+
demo.queue(max_size=50).launch(share=True, ssr_mode=False, show_error=True)
|