File size: 8,277 Bytes
af14f34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import cv2
import base64
import numpy as np
from flask import Flask, render_template, Response, request, jsonify
from PIL import Image
from time import time as unix_time
import os
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
import time
from mediapipe.framework.formats import landmark_pb2
from mediapipe import solutions
from tflite_support.task import vision as vision2
from tflite_support.task import core
from tflite_support.task import processor
from numpy.linalg import norm
from collections import defaultdict
import re

# ======= Global Variables ========
char_list = []
letter_result = 0
old_letter_result = 0
result_to_show = 0
cresult_to_show = 0
text_x = 0
text_y = 0
cwhich = 0
lastwidth = 400
letterscore = 0
frame_time = 0
same_letter_time = 0
no_hand_flag = 1

# ====== N-gram Word Buffer + Itsekiri Translation ======
letter_buffer = []
MAX_BUFFER_SIZE = 20

letter_list = list("ABCDEFGHIJKLMNOPQRSTUVWXYZ#")
word_end_chars = set(['#', '>'])

# Dummy dictionary
itsekiri_dict = {
    "HELLO": "MIGWO",
    "HOW": "KÉDÙ",
    "ARE": "WÈRÈ",
    "YOU": "ÉRÉ",
    "I": "MÉ",
    "LOVE": "FÈ",
    "SCHOOL": "ÍGÚE",
    "YES": "BÈÈNÈ",
    "NO": "MÀ",
    "MY": "MÉ",
    "NAME": "ÉRÉMÉ",
    "IS": "NÌ",
    "WHAT": "KÍN",
    "GOOD": "DÉ"
}


def decode_letters_to_words(buffer):
    cleaned = ''.join([ch for ch in buffer if ch in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ#>'])
    words = re.split(r'[>#]', cleaned)
    return ' '.join(words)


def translate_to_itsekiri(sentence):
    words = sentence.upper().split()
    translated = [itsekiri_dict.get(word, word) for word in words]
    return ' '.join(translated)


def brightness(img):
    return np.average(norm(img, axis=2)) / np.sqrt(3) if len(img.shape) == 3 else np.average(img)


def draw_landmarks_on_image(rgb_image, detection_result):
    hand_landmarks_list = detection_result.hand_landmarks
    handedness_list = detection_result.handedness
    annotated_image = np.copy(rgb_image)
    crop = []
    image_height, image_width, _ = annotated_image.shape

    for idx in range(len(hand_landmarks_list)):
        hand_landmarks = hand_landmarks_list[idx]
        handedness = handedness_list[idx]
        hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
        hand_landmarks_proto.landmark.extend([
            landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in hand_landmarks
        ])
        solutions.drawing_utils.draw_landmarks(
            annotated_image,
            hand_landmarks_proto,
            solutions.hands.HAND_CONNECTIONS,
            solutions.drawing_styles.get_default_hand_landmarks_style(),
            solutions.drawing_styles.get_default_hand_connections_style())

        x_coordinates = [landmark.x for landmark in hand_landmarks]
        y_coordinates = [landmark.y for landmark in hand_landmarks]
        min_x = int(min(x_coordinates) * image_width)
        min_y = int(min(y_coordinates) * image_height)
        max_x = int(max(x_coordinates) * image_width)
        max_y = int(max(y_coordinates) * image_height)

        sect_diameter = max(max_y - min_y, max_x - min_x) + 50
        sect_radius = sect_diameter // 2
        center_x = (min_x + max_x) // 2
        center_y = (min_y + max_y) // 2

        crop_top = max(center_y - sect_radius, 0)
        crop_bottom = min(center_y + sect_radius, image_height)
        crop_left = max(center_x - sect_radius, 0)
        crop_right = min(center_x + sect_radius, image_width)

        annotated_image = cv2.rectangle(annotated_image, (crop_left, crop_top), (crop_right, crop_bottom), (255, 0, 0), 6)
        global text_x, text_y
        text_x, text_y = crop_left, crop_top
        crop = annotated_image[crop_top:crop_bottom, crop_left:crop_right]

        h, w = crop.shape[:2]
        crop = cv2.resize(crop, (150, int(150 * h / w)))

    return [annotated_image, crop]


# ====== MediaPipe Setup ======
RESULT = None
BaseOptions = mp.tasks.BaseOptions
HandLandmarker = mp.tasks.vision.HandLandmarker
HandLandmarkerOptions = mp.tasks.vision.HandLandmarkerOptions
HandLandmarkerResult = mp.tasks.vision.HandLandmarkerResult
VisionRunningMode = mp.tasks.vision.RunningMode

cbase_options = core.BaseOptions(file_name="./better_exported/model.tflite")
ccbase_options = core.BaseOptions(file_name="./exported/model.tflite")

cclassification_options = processor.ClassificationOptions(max_results=1)
coptions = vision2.ImageClassifierOptions(base_options=cbase_options, classification_options=cclassification_options)
ccoptions = vision2.ImageClassifierOptions(base_options=ccbase_options, classification_options=cclassification_options)
cclassifier = vision2.ImageClassifier.create_from_options(coptions)
ccclassifier = vision2.ImageClassifier.create_from_options(ccoptions)


def print_result(result: HandLandmarkerResult, output_image: mp.Image, timestamp_ms: int):
    global RESULT
    RESULT = result


options = HandLandmarkerOptions(
    base_options=BaseOptions(model_asset_path='hand_landmarker.task'),
    running_mode=VisionRunningMode.LIVE_STREAM,
    result_callback=print_result
)

detector = vision.HandLandmarker.create_from_options(options)

# ====== Flask App ======
app = Flask(__name__)


@app.route('/')
def index():
    return render_template('index.html')


@app.route('/api/data', methods=['POST'])
def handle_video_frame():
    frame = request.json.get('key')
    response_frame = data_uri_to_image(frame)
    decimg = response_frame

    mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=decimg)
    detector.detect_async(mp_image, mp.Timestamp.from_seconds(time.time()).value)

    global no_hand_flag, frame_time, same_letter_time, letter_result, old_letter_result, char_list, letterscore

    try:
        result_images = draw_landmarks_on_image(mp_image.numpy_view(), RESULT)
        annotated_image = result_images[0]
        cropped_image = result_images[1]

        h, w = annotated_image.shape[0:2]
        neww = 500
        newh = int(neww * (h / w))
        final_image = cv2.resize(annotated_image, (neww, newh))

        if RESULT.handedness != []:
            no_hand_flag = 0

            if RESULT.handedness[0][0].display_name == 'Right':
                tf_image = vision2.TensorImage.create_from_array(cropped_image)
                classification_result = cclassifier.classify(tf_image)
                cclassification_result = ccclassifier.classify(tf_image)

                result_to_show = classification_result.classifications[0].categories[0].category_name
                cresult_to_show = cclassification_result.classifications[0].categories[0].category_name

                if cclassification_result.classifications[0].categories[0].score > classification_result.classifications[0].categories[0].score:
                    letter_result = cresult_to_show
                    cwhich = "Old"
                    if result_to_show == "P" and cresult_to_show != "P":
                        cwhich = "New"
                        letter_result = result_to_show
                else:
                    letter_result = result_to_show
                    cwhich = "New"
                    if cresult_to_show == "M" and cresult_to_show != "M":
                        cwhich = "Old"
                    if result_to_show != "R" and cresult_to_show == "R":
                        cwhich = "Old"
                        letter_result = cresult_to_show
                    if result_to_show != "T" and cresult_to_show == "T":
                        cwhich = "Old"
                        letter_result = cresult_to_show

                letterscore = cclassification_result.classifications[0].categories[0].score if cwhich == "Old" else classification_result.classifications[0].categories[0].score

            else:
                tf_image = vision2.TensorImage.create_from_array(cropped_image)
                classification_result = cclassifier.classify(tf_image)
                result_to_show = classification_result.classifications[0].categories[0].category_name

                letter_result = '_' if result_to_show != "B" else '>'

        # Append to buffer if valid
        if letter_result in letter_list:
            letter