File size: 8,277 Bytes
af14f34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import cv2
import base64
import numpy as np
from flask import Flask, render_template, Response, request, jsonify
from PIL import Image
from time import time as unix_time
import os
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
import time
from mediapipe.framework.formats import landmark_pb2
from mediapipe import solutions
from tflite_support.task import vision as vision2
from tflite_support.task import core
from tflite_support.task import processor
from numpy.linalg import norm
from collections import defaultdict
import re
# ======= Global Variables ========
char_list = []
letter_result = 0
old_letter_result = 0
result_to_show = 0
cresult_to_show = 0
text_x = 0
text_y = 0
cwhich = 0
lastwidth = 400
letterscore = 0
frame_time = 0
same_letter_time = 0
no_hand_flag = 1
# ====== N-gram Word Buffer + Itsekiri Translation ======
letter_buffer = []
MAX_BUFFER_SIZE = 20
letter_list = list("ABCDEFGHIJKLMNOPQRSTUVWXYZ#")
word_end_chars = set(['#', '>'])
# Dummy dictionary
itsekiri_dict = {
"HELLO": "MIGWO",
"HOW": "KÉDÙ",
"ARE": "WÈRÈ",
"YOU": "ÉRÉ",
"I": "MÉ",
"LOVE": "FÈ",
"SCHOOL": "ÍGÚE",
"YES": "BÈÈNÈ",
"NO": "MÀ",
"MY": "MÉ",
"NAME": "ÉRÉMÉ",
"IS": "NÌ",
"WHAT": "KÍN",
"GOOD": "DÉ"
}
def decode_letters_to_words(buffer):
cleaned = ''.join([ch for ch in buffer if ch in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ#>'])
words = re.split(r'[>#]', cleaned)
return ' '.join(words)
def translate_to_itsekiri(sentence):
words = sentence.upper().split()
translated = [itsekiri_dict.get(word, word) for word in words]
return ' '.join(translated)
def brightness(img):
return np.average(norm(img, axis=2)) / np.sqrt(3) if len(img.shape) == 3 else np.average(img)
def draw_landmarks_on_image(rgb_image, detection_result):
hand_landmarks_list = detection_result.hand_landmarks
handedness_list = detection_result.handedness
annotated_image = np.copy(rgb_image)
crop = []
image_height, image_width, _ = annotated_image.shape
for idx in range(len(hand_landmarks_list)):
hand_landmarks = hand_landmarks_list[idx]
handedness = handedness_list[idx]
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
hand_landmarks_proto.landmark.extend([
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in hand_landmarks
])
solutions.drawing_utils.draw_landmarks(
annotated_image,
hand_landmarks_proto,
solutions.hands.HAND_CONNECTIONS,
solutions.drawing_styles.get_default_hand_landmarks_style(),
solutions.drawing_styles.get_default_hand_connections_style())
x_coordinates = [landmark.x for landmark in hand_landmarks]
y_coordinates = [landmark.y for landmark in hand_landmarks]
min_x = int(min(x_coordinates) * image_width)
min_y = int(min(y_coordinates) * image_height)
max_x = int(max(x_coordinates) * image_width)
max_y = int(max(y_coordinates) * image_height)
sect_diameter = max(max_y - min_y, max_x - min_x) + 50
sect_radius = sect_diameter // 2
center_x = (min_x + max_x) // 2
center_y = (min_y + max_y) // 2
crop_top = max(center_y - sect_radius, 0)
crop_bottom = min(center_y + sect_radius, image_height)
crop_left = max(center_x - sect_radius, 0)
crop_right = min(center_x + sect_radius, image_width)
annotated_image = cv2.rectangle(annotated_image, (crop_left, crop_top), (crop_right, crop_bottom), (255, 0, 0), 6)
global text_x, text_y
text_x, text_y = crop_left, crop_top
crop = annotated_image[crop_top:crop_bottom, crop_left:crop_right]
h, w = crop.shape[:2]
crop = cv2.resize(crop, (150, int(150 * h / w)))
return [annotated_image, crop]
# ====== MediaPipe Setup ======
RESULT = None
BaseOptions = mp.tasks.BaseOptions
HandLandmarker = mp.tasks.vision.HandLandmarker
HandLandmarkerOptions = mp.tasks.vision.HandLandmarkerOptions
HandLandmarkerResult = mp.tasks.vision.HandLandmarkerResult
VisionRunningMode = mp.tasks.vision.RunningMode
cbase_options = core.BaseOptions(file_name="./better_exported/model.tflite")
ccbase_options = core.BaseOptions(file_name="./exported/model.tflite")
cclassification_options = processor.ClassificationOptions(max_results=1)
coptions = vision2.ImageClassifierOptions(base_options=cbase_options, classification_options=cclassification_options)
ccoptions = vision2.ImageClassifierOptions(base_options=ccbase_options, classification_options=cclassification_options)
cclassifier = vision2.ImageClassifier.create_from_options(coptions)
ccclassifier = vision2.ImageClassifier.create_from_options(ccoptions)
def print_result(result: HandLandmarkerResult, output_image: mp.Image, timestamp_ms: int):
global RESULT
RESULT = result
options = HandLandmarkerOptions(
base_options=BaseOptions(model_asset_path='hand_landmarker.task'),
running_mode=VisionRunningMode.LIVE_STREAM,
result_callback=print_result
)
detector = vision.HandLandmarker.create_from_options(options)
# ====== Flask App ======
app = Flask(__name__)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/api/data', methods=['POST'])
def handle_video_frame():
frame = request.json.get('key')
response_frame = data_uri_to_image(frame)
decimg = response_frame
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=decimg)
detector.detect_async(mp_image, mp.Timestamp.from_seconds(time.time()).value)
global no_hand_flag, frame_time, same_letter_time, letter_result, old_letter_result, char_list, letterscore
try:
result_images = draw_landmarks_on_image(mp_image.numpy_view(), RESULT)
annotated_image = result_images[0]
cropped_image = result_images[1]
h, w = annotated_image.shape[0:2]
neww = 500
newh = int(neww * (h / w))
final_image = cv2.resize(annotated_image, (neww, newh))
if RESULT.handedness != []:
no_hand_flag = 0
if RESULT.handedness[0][0].display_name == 'Right':
tf_image = vision2.TensorImage.create_from_array(cropped_image)
classification_result = cclassifier.classify(tf_image)
cclassification_result = ccclassifier.classify(tf_image)
result_to_show = classification_result.classifications[0].categories[0].category_name
cresult_to_show = cclassification_result.classifications[0].categories[0].category_name
if cclassification_result.classifications[0].categories[0].score > classification_result.classifications[0].categories[0].score:
letter_result = cresult_to_show
cwhich = "Old"
if result_to_show == "P" and cresult_to_show != "P":
cwhich = "New"
letter_result = result_to_show
else:
letter_result = result_to_show
cwhich = "New"
if cresult_to_show == "M" and cresult_to_show != "M":
cwhich = "Old"
if result_to_show != "R" and cresult_to_show == "R":
cwhich = "Old"
letter_result = cresult_to_show
if result_to_show != "T" and cresult_to_show == "T":
cwhich = "Old"
letter_result = cresult_to_show
letterscore = cclassification_result.classifications[0].categories[0].score if cwhich == "Old" else classification_result.classifications[0].categories[0].score
else:
tf_image = vision2.TensorImage.create_from_array(cropped_image)
classification_result = cclassifier.classify(tf_image)
result_to_show = classification_result.classifications[0].categories[0].category_name
letter_result = '_' if result_to_show != "B" else '>'
# Append to buffer if valid
if letter_result in letter_list:
letter
|