Spaces:
Sleeping
Sleeping
adding components
Browse files- README.md +3 -3
- __pycache__/fileingestor.cpython-310.pyc +0 -0
- __pycache__/generator.cpython-310.pyc +0 -0
- __pycache__/orchestrator.cpython-310.pyc +0 -0
- __pycache__/retriever.cpython-310.pyc +0 -0
- __pycache__/vectorDB.cpython-310.pyc +0 -0
- app.py +121 -28
- fileingestor.py +27 -0
- generator.py +64 -0
- orchestrator.py +532 -0
- qdrant.png +0 -0
- retriever.py +64 -0
- vectorDB.py +35 -0
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: Chabo Dev
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.47.2
|
| 8 |
app_file: app.py
|
|
|
|
| 1 |
---
|
| 2 |
title: Chabo Dev
|
| 3 |
+
emoji: 🤖 [⚙️]
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.47.2
|
| 8 |
app_file: app.py
|
__pycache__/fileingestor.cpython-310.pyc
ADDED
|
Binary file (1.51 kB). View file
|
|
|
__pycache__/generator.cpython-310.pyc
ADDED
|
Binary file (3.53 kB). View file
|
|
|
__pycache__/orchestrator.cpython-310.pyc
ADDED
|
Binary file (23.7 kB). View file
|
|
|
__pycache__/retriever.cpython-310.pyc
ADDED
|
Binary file (3.77 kB). View file
|
|
|
__pycache__/vectorDB.cpython-310.pyc
ADDED
|
Binary file (2.19 kB). View file
|
|
|
app.py
CHANGED
|
@@ -1,5 +1,9 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
# Define the HTML template for embedding an external Hugging Face Space
|
| 4 |
# Replace <space-url> with your actual Space URLs (e.g., "https://hf.co/spaces/user/app-name")
|
| 5 |
def embed_space(space_url: str, height: int = 800) -> gr.HTML:
|
|
@@ -16,41 +20,130 @@ def embed_space(space_url: str, height: int = 800) -> gr.HTML:
|
|
| 16 |
return gr.HTML(iframe_html)
|
| 17 |
|
| 18 |
# --- Define the Layout ---
|
| 19 |
-
with gr.Blocks(theme=gr.themes.Monochrome()) as dashboard_app:
|
| 20 |
gr.Markdown(
|
| 21 |
"""
|
| 22 |
-
# 🚀
|
| 23 |
-
|
| 24 |
"""
|
| 25 |
)
|
| 26 |
|
| 27 |
with gr.Tabs():
|
| 28 |
|
| 29 |
-
# 1.
|
| 30 |
-
# This is
|
| 31 |
-
with gr.Tab("
|
| 32 |
-
gr.
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
# 3.
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
# Launch the app
|
| 56 |
dashboard_app.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from vectorDB import vectordbText
|
| 3 |
+
from retriever import retriverText
|
| 4 |
+
from fileingestor import fileingestorText
|
| 5 |
+
from generator import generatorText
|
| 6 |
+
from orchestrator import orchestratorText
|
| 7 |
# Define the HTML template for embedding an external Hugging Face Space
|
| 8 |
# Replace <space-url> with your actual Space URLs (e.g., "https://hf.co/spaces/user/app-name")
|
| 9 |
def embed_space(space_url: str, height: int = 800) -> gr.HTML:
|
|
|
|
| 20 |
return gr.HTML(iframe_html)
|
| 21 |
|
| 22 |
# --- Define the Layout ---
|
| 23 |
+
with gr.Blocks(theme=gr.themes.Monochrome(), fill_width = True) as dashboard_app:
|
| 24 |
gr.Markdown(
|
| 25 |
"""
|
| 26 |
+
# 🚀 ChaBo: Modular chatbot framework
|
| 27 |
+
Discover the essential microservices hub designed for the modular development and efficient deployment of Retrieval-Augmented Generation (RAG) chatbots
|
| 28 |
"""
|
| 29 |
)
|
| 30 |
|
| 31 |
with gr.Tabs():
|
| 32 |
|
| 33 |
+
# 1. About us
|
| 34 |
+
# This is info page
|
| 35 |
+
with gr.Tab("About ChaBo"):
|
| 36 |
+
with gr.Row(elem_classes = "centered-content-row"):
|
| 37 |
+
gr.Markdown("""## ChaBo: A modular chatbot framework
|
| 38 |
+
This framework is designed around a microservices architecture \
|
| 39 |
+
allowing different conversational components (like Vector database, Retrieval, Generator and other components)\
|
| 40 |
+
to be developed, deployed, and scaled independently. \
|
| 41 |
+
This design promotes flexibility and robust, complex chatbot development \
|
| 42 |
+
by enabling developers to easily swap out or upgrade individual services.
|
| 43 |
+
|
| 44 |
+
**Note**: As of now this is more adapted towards delpoyment of these services \
|
| 45 |
+
individually as individual spaces on HF infra, soon we will be releasing \
|
| 46 |
+
the docker-compose method for dedicated deployment
|
| 47 |
+
""")
|
| 48 |
+
|
| 49 |
+
# 2. Vector DB
|
| 50 |
+
with gr.Tab("Vector Database: Qdrant"):
|
| 51 |
+
with gr.Row(elem_classes = "centered-content-row"):
|
| 52 |
+
with gr.Column(scale=1):
|
| 53 |
+
gr.Markdown("### What is a Vector Database?")
|
| 54 |
+
gr.Markdown("""
|
| 55 |
+
A Vector Database is a specialized database designed to efficiently store, manage, \
|
| 56 |
+
and retrieve **vector embeddings**—high-dimensional numerical representations of \
|
| 57 |
+
unstructured data like text, images, or audio.It is the cornerstone of modern AI \
|
| 58 |
+
applications like semantic search and Retrieval-Augmented Generation (RAG). \
|
| 59 |
+
Unlike traditional databases, a vector database excels at **Nearest Neighbor Search (NNS)**, \
|
| 60 |
+
allowing it to quickly find semantically similar data points, which is essential for \
|
| 61 |
+
grounding large language models with external knowledge.
|
| 62 |
+
""")
|
| 63 |
+
gr.Markdown(vectordbText)
|
| 64 |
+
gr.Image(
|
| 65 |
+
value="qdrant.png", # <- Change this file path
|
| 66 |
+
label="Qdrant Dashboard",
|
| 67 |
+
show_label=True,
|
| 68 |
+
container=False,)
|
| 69 |
+
|
| 70 |
|
| 71 |
+
# 3. Retriever and Reranker (Embedded via iframe)
|
| 72 |
+
with gr.Tab("Retriever and Reranker"):
|
| 73 |
+
with gr.Row(elem_classes = "centered-content-row"):
|
| 74 |
+
with gr.Column(scale=1):
|
| 75 |
+
gr.Markdown("## What is Retriever ?")
|
| 76 |
+
gr.Markdown("""It is the crucial process of efficiently finding and extracting relevant \
|
| 77 |
+
information from a vast knowledge base to ground and inform the chatbot's final answer.""")
|
| 78 |
+
gr.Markdown(retriverText)
|
| 79 |
+
embed_space("https://giz-chatfed-retriever0-3.hf.space", height=700)
|
| 80 |
+
|
| 81 |
+
# 4. File Ingestor (Embedding via iframe pending due to compliance and Readme documentation missing)
|
| 82 |
+
with gr.Tab("File Ingestor"):
|
| 83 |
+
with gr.Row(elem_classes = "centered-content-row"):
|
| 84 |
+
with gr.Column(scale=1):
|
| 85 |
+
gr.Markdown("## What is File Ingestor")
|
| 86 |
+
gr.Markdown("""In certain chatbot use-cases it might be that user input can be a file upload,\
|
| 87 |
+
on top of existing Vector Database. In this case it's important that we ingest this \
|
| 88 |
+
file and use it for next for relevant use """)
|
| 89 |
+
gr.Markdown(fileingestorText)
|
| 90 |
+
### Enables this once space is public: after Proper EU aI act compliance release embed_space("https://giz-chatfed-whisp.hf.space", height=700)
|
| 91 |
+
|
| 92 |
+
# 5. Generator
|
| 93 |
+
with gr.Tab("Generator"):
|
| 94 |
+
with gr.Row(elem_classes = "centered-content-row"):
|
| 95 |
+
with gr.Column(scale=1):
|
| 96 |
+
gr.Markdown("## What is Generator?")
|
| 97 |
+
gr.Markdown("""It is the microserviceis the crucial process of efficiently finding and extracting relevant \
|
| 98 |
+
information from a vast knowledge base to ground and inform the chatbot's final answer.""")
|
| 99 |
+
gr.Markdown(generatorText)
|
| 100 |
+
|
| 101 |
+
# 6. Orchest
|
| 102 |
+
with gr.Tab("Orchestrator"):
|
| 103 |
+
with gr.Row(elem_classes = "centered-content-row"):
|
| 104 |
+
with gr.Column(scale=1):
|
| 105 |
+
gr.Markdown("## What is Orchestrator ?")
|
| 106 |
+
gr.Markdown(""" The Orchestrator is the central command module, defining the exact \
|
| 107 |
+
steps and flow of data: it sequences the initial user prompt, directs the query \
|
| 108 |
+
to the correct vector retrieval module, manages the document reranking (if applicable),\
|
| 109 |
+
and finally routes the retrieved context and original prompt to the Large Language Model \
|
| 110 |
+
(LLM) for final answer generation..""")
|
| 111 |
+
gr.Markdown(orchestratorText)
|
| 112 |
+
|
| 113 |
+
with gr.Tab("HuggingFace Chat UI"):
|
| 114 |
+
with gr.Row(elem_classes = "centered-content-row"):
|
| 115 |
+
with gr.Column(scale=1):
|
| 116 |
+
gr.Markdown("## What is Retriever ?")
|
| 117 |
+
gr.Markdown("""It is the crucial process of efficiently finding and extracting relevant \
|
| 118 |
+
information from a vast knowledge base to ground and inform the chatbot's final answer.""")
|
| 119 |
+
gr.Markdown(""" This mciroservice integrates with the vector database to retrieve semantically relevant documents,\
|
| 120 |
+
with optional reranking for precision, ready for seamless use in ChaBo RAG workflows. \
|
| 121 |
+
|
| 122 |
+
For more info on Retriever and code base visit the following links:
|
| 123 |
+
- ChaBo_Retriever : [**ReadMe**](https://huggingface.co/spaces/GIZ/chatfed_retriever0.3/blob/main/README.md)
|
| 124 |
+
- ChaBo_Retriever: [**Codebase**](https://huggingface.co/spaces/GIZ/chatfed_retriever0.3/tree/main)""")
|
| 125 |
+
embed_space("https://giz-chatfed-retriever0-3.hf.space", height=700)
|
| 126 |
|
| 127 |
+
with gr.Tab("Integrated UI"):
|
| 128 |
+
with gr.Row(elem_classes = "centered-content-row"):
|
| 129 |
+
with gr.Column(scale=1):
|
| 130 |
+
gr.Markdown("## What is Retriever ?")
|
| 131 |
+
gr.Markdown("""It is the crucial process of efficiently finding and extracting relevant \
|
| 132 |
+
information from a vast knowledge base to ground and inform the chatbot's final answer.""")
|
| 133 |
+
gr.Markdown(""" This mciroservice integrates with the vector database to retrieve semantically relevant documents,\
|
| 134 |
+
with optional reranking for precision, ready for seamless use in ChaBo RAG workflows. \
|
| 135 |
+
|
| 136 |
+
For more info on Retriever and code base visit the following links:
|
| 137 |
+
- ChaBo_Retriever : [**ReadMe**](https://huggingface.co/spaces/GIZ/chatfed_retriever0.3/blob/main/README.md)
|
| 138 |
+
- ChaBo_Retriever: [**Codebase**](https://huggingface.co/spaces/GIZ/chatfed_retriever0.3/tree/main)""")
|
| 139 |
+
embed_space("https://giz-chatfed-retriever0-3.hf.space", height=700)
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
dashboard_app.css = """
|
| 143 |
+
.centered-content-row {
|
| 144 |
+
max-width: 1000px; /* Adjust this value for your desired max width */
|
| 145 |
+
margin: 0 auto; /* Centers the container horizontally */
|
| 146 |
+
}
|
| 147 |
+
"""
|
| 148 |
# Launch the app
|
| 149 |
dashboard_app.launch()
|
fileingestor.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fileingestorText = """ This mciroservice integrates with the Orchestrator and HuggingFace Chat UI and \
|
| 2 |
+
uses the deterministic tool for further processing/actions. \
|
| 3 |
+
|
| 4 |
+
[ChaBo_FileIngestor](https://huggingface.co/spaces/GIZ/eudr_chabo_ingestor) hosts a microservice which takes the \
|
| 5 |
+
Geojson file input and calls [WHISP API]("https://whisp.openforis.org/api/submit/geojson").
|
| 6 |
+
|
| 7 |
+
**API documentation**: 1 API Endpoint
|
| 8 |
+
|
| 9 |
+
### api_name: /ingest
|
| 10 |
+
|
| 11 |
+
Params:
|
| 12 |
+
- filepath(filepath): Required
|
| 13 |
+
|
| 14 |
+
Returns(str): Relevant response base don internal code of the microservice.
|
| 15 |
+
|
| 16 |
+
**How to Connect**
|
| 17 |
+
|
| 18 |
+
```python
|
| 19 |
+
|
| 20 |
+
from gradio_client import Client, handle_file
|
| 21 |
+
client = Client("https://giz-eudr-chabo-ingestor.hf.space/")
|
| 22 |
+
result = client.predict(
|
| 23 |
+
file=handle_file('https://github.com/gradio-app/gradio/raw/main/test/test_files/sample_file.pdf'),
|
| 24 |
+
api_name="/ingest"
|
| 25 |
+
)
|
| 26 |
+
```
|
| 27 |
+
"""
|
generator.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
generatorText = """ This microservice integrates with the Retriever to answer the user query in ChaBo RAG workflows. \
|
| 2 |
+
|
| 3 |
+
# ChaBo Generator on Hugging Face Spaces
|
| 4 |
+
|
| 5 |
+
[ChaBo_Generator](https://huggingface.co/spaces/GIZ/eudr_chabo_generator/blob/main/README.md) Space hosts \
|
| 6 |
+
a Generator microservice for answering user query. This is just a Infrastructural component and doesnt\
|
| 7 |
+
not serve any user application through its User Interfaceas the its consumed in ChaBo workflow thorugh Orchestrator.
|
| 8 |
+
|
| 9 |
+
ChaBo Generator - MCP Server
|
| 10 |
+
|
| 11 |
+
A language model-based generation service designed for ChatFed RAG\
|
| 12 |
+
(Retrieval-Augmented Generation) pipelines. This module serves as an \
|
| 13 |
+
**MCP (Model Context Protocol) server** that generates contextual responses \
|
| 14 |
+
using configurable LLM providers with support for retrieval result processing.
|
| 15 |
+
|
| 16 |
+
**API Endpoint**: 1 API which provides context-aware text generation using \
|
| 17 |
+
configurable LLM providers when properly configured with API credentials.
|
| 18 |
+
|
| 19 |
+
### api_name: /generate
|
| 20 |
+
|
| 21 |
+
Parameters:
|
| 22 |
+
- `query` (str, required): The question or query to be answered
|
| 23 |
+
- `context` (str|list, required): Context for answering - can be plain text or list of retrieval result dictionaries
|
| 24 |
+
|
| 25 |
+
Returns: String containing the generated answer based on the provided context and query.
|
| 26 |
+
|
| 27 |
+
**Hot to connect**:
|
| 28 |
+
```python
|
| 29 |
+
from gradio_client import Client
|
| 30 |
+
|
| 31 |
+
client = Client("ENTER CONTAINER URL / SPACE ID")
|
| 32 |
+
result = client.predict(
|
| 33 |
+
query="What are the key findings?",
|
| 34 |
+
context="Your relevant documents or context here...",
|
| 35 |
+
api_name="/generate"
|
| 36 |
+
)
|
| 37 |
+
print(result)
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
#### Configuration
|
| 41 |
+
|
| 42 |
+
LLM Provider Configuration:
|
| 43 |
+
1. Set your preferred inference provider in `params.cfg`
|
| 44 |
+
2. Configure the model and generation parameters
|
| 45 |
+
3. Set the required API key environment variable
|
| 46 |
+
4. [Optional] Adjust temperature and max_tokens settings
|
| 47 |
+
5. Run the app:
|
| 48 |
+
|
| 49 |
+
```bash
|
| 50 |
+
docker build -t chatfed-generator .
|
| 51 |
+
docker run -p 7860:7860 chatfed-generator
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
#### Environment Variables Required
|
| 55 |
+
|
| 56 |
+
Make sure to set the appropriate environment variables:
|
| 57 |
+
- OpenAI: `OPENAI_API_KEY`
|
| 58 |
+
- Anthropic: `ANTHROPIC_API_KEY`
|
| 59 |
+
- Cohere: `COHERE_API_KEY`
|
| 60 |
+
- HuggingFace: `HF_TOKEN`
|
| 61 |
+
|
| 62 |
+
For more info on Retriever and code base visit the following links:
|
| 63 |
+
- ChaBo_Generator : [**ReadMe**](https://huggingface.co/spaces/GIZ/eudr_chabo_generator/blob/main/README.md)
|
| 64 |
+
- ChaBo_Generator: [**Codebase**](https://huggingface.co/spaces/GIZ/eudr_chabo_generator/tree/main)"""
|
orchestrator.py
ADDED
|
@@ -0,0 +1,532 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
orchestratorText = """ # Chabo Orchestrator Documentation
|
| 2 |
+
## Table of Contents
|
| 3 |
+
1. Overview
|
| 4 |
+
2. System Architecture
|
| 5 |
+
3. Components
|
| 6 |
+
4. Configuration
|
| 7 |
+
5. Deployment Guide
|
| 8 |
+
6. API Reference
|
| 9 |
+
7. Usage Examples
|
| 10 |
+
8. Troubleshooting
|
| 11 |
+
|
| 12 |
+
## Overview
|
| 13 |
+
|
| 14 |
+
The Chabo Orchestrator is the central coordination module of the Chabo RAG system. It orchestrates the flow between multiple microservices to provide intelligent document processing and question-answering capabilities. The system is designed for deployment on Huggingface Spaces.
|
| 15 |
+
|
| 16 |
+
### Key Features
|
| 17 |
+
- **Workflow Orchestration**: Uses LangGraph to manage complex processing pipelines
|
| 18 |
+
- **Multi-Modal Support**: Handles files dependent on ChatUI and Ingestor config (e.g. PDF, DOCX, GeoJSON, and JSON )
|
| 19 |
+
- **Streaming Responses**: Real-time response generation with Server-Sent Events (SSE)
|
| 20 |
+
- **Dual Processing Modes**:
|
| 21 |
+
- **Direct Output Mode**: Returns ingestor results immediately (e.g. EUDR use case)
|
| 22 |
+
- **Standard RAG Mode**: Full retrieval-augmented generation pipeline
|
| 23 |
+
- **Intelligent Caching**: Prevents redundant file processing (e.g. EUDR use case)
|
| 24 |
+
- **Multiple Interfaces**: FastAPI endpoints for modules; LangServe endpoints for ChatUI; Gradio UI for testing
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
## System Architecture
|
| 28 |
+
|
| 29 |
+
### High-Level Architecture
|
| 30 |
+
|
| 31 |
+
```
|
| 32 |
+
┌─────────────────┐
|
| 33 |
+
│ ChatUI │
|
| 34 |
+
│ Frontend │
|
| 35 |
+
└────────┬────────┘
|
| 36 |
+
│ HTTP/SSE
|
| 37 |
+
▼
|
| 38 |
+
┌─────────────────────────────────┐
|
| 39 |
+
│ Chabo Orchestrator │
|
| 40 |
+
│ ┌─────────────────────────┐ │
|
| 41 |
+
│ │ LangGraph Workflow │ │
|
| 42 |
+
│ │ ┌─────────────────┐ │ │
|
| 43 |
+
│ │ │ Detect File │ │ │
|
| 44 |
+
│ │ │ Type │ │ │
|
| 45 |
+
│ │ └────────┬────────┘ │ │
|
| 46 |
+
│ │ │ │ │
|
| 47 |
+
│ │ ┌────────▼────────┐ │ │
|
| 48 |
+
│ │ │ Ingest File │ │ │
|
| 49 |
+
│ │ └────────┬────────┘ │ │
|
| 50 |
+
│ │ │ │ │
|
| 51 |
+
│ │ ┌─────┴──────┐ │ │
|
| 52 |
+
│ │ │ │ │ │
|
| 53 |
+
│ │ ┌──▼───┐ ┌────▼───┐ │ │
|
| 54 |
+
│ │ │Direct│ │Retrieve│ │ │
|
| 55 |
+
│ │ │Output│ │Context │ │ │
|
| 56 |
+
│ │ └──┬───┘ └────┬───┘ │ │
|
| 57 |
+
│ │ │ │ │ │
|
| 58 |
+
│ │ │ ┌────▼───┐ │ │
|
| 59 |
+
│ │ │ │Generate│ │ │
|
| 60 |
+
│ │ │ │Response│ │ │
|
| 61 |
+
│ │ │ └────────┘ │ │
|
| 62 |
+
│ └──────┴──────────────────┘ │
|
| 63 |
+
└──────┬───────────┬──────────┬───┘
|
| 64 |
+
│ │ │
|
| 65 |
+
┌───▼──┐ ┌───▼───┐ ┌──▼────┐
|
| 66 |
+
│Ingest│ │Retrie-│ │Genera-│
|
| 67 |
+
│or │ │ver │ │tor │
|
| 68 |
+
└──────┘ └───────┘ └───────┘
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
### Component Communication
|
| 72 |
+
|
| 73 |
+
All communication between modules happens over HTTP:
|
| 74 |
+
- **Orchestrator ↔ Ingestor**: Gradio Client (file upload, processing)
|
| 75 |
+
- **Orchestrator ↔ Retriever**: Gradio Client (semantic search)
|
| 76 |
+
- **Orchestrator ↔ Generator**: HTTP streaming (SSE for real-time responses)
|
| 77 |
+
- **ChatUI ↔ Orchestrator**: LangServe streaming endpoints
|
| 78 |
+
|
| 79 |
+
### Workflow Logic
|
| 80 |
+
|
| 81 |
+
The orchestrator implements two distinct workflows:
|
| 82 |
+
|
| 83 |
+
**Direct Output Workflow** (when `DIRECT_OUTPUT=True` and file is new):
|
| 84 |
+
```
|
| 85 |
+
File Upload → Detect Type → Ingest → Direct Output → Return Results
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
**Standard RAG Workflow** (default or cached files):
|
| 89 |
+
```
|
| 90 |
+
Query → Retrieve Context → Generate Response → Stream to User
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
## Components
|
| 94 |
+
|
| 95 |
+
### 1. Main Application (`main.py`)
|
| 96 |
+
|
| 97 |
+
- LangServe endpoints for ChatUI integration
|
| 98 |
+
- Gradio web interface for testing
|
| 99 |
+
- FastAPI endpoints for diagnostics and future use (e.g. /health)
|
| 100 |
+
- Cache management endpoint (for direct output use cases)
|
| 101 |
+
|
| 102 |
+
**Key Functions:**
|
| 103 |
+
- `chatui_adapter()`: Handles text-only queries
|
| 104 |
+
- `chatui_file_adapter()`: Handles file uploads with queries
|
| 105 |
+
- `create_gradio_interface()`: Test UI
|
| 106 |
+
|
| 107 |
+
### 2. Workflow Nodes (`nodes.py`)
|
| 108 |
+
|
| 109 |
+
LangGraph nodes that implement the processing pipeline:
|
| 110 |
+
|
| 111 |
+
**Node Functions:**
|
| 112 |
+
|
| 113 |
+
- `detect_file_type_node()`: Identifies file type and determines routing
|
| 114 |
+
- `ingest_node()`: Processes files through appropriate ingestor
|
| 115 |
+
- `direct_output_node()`: Returns raw ingestor results
|
| 116 |
+
- `retrieve_node()`: Fetches relevant context from vector store
|
| 117 |
+
- `generate_node_streaming()`: Streams LLM responses
|
| 118 |
+
- `route_workflow()`: Conditional routing logic
|
| 119 |
+
|
| 120 |
+
**Helper Functions:**
|
| 121 |
+
|
| 122 |
+
- `process_query_streaming()`: Unified streaming interface
|
| 123 |
+
- `compute_file_hash()`: SHA256 hashing for deduplication
|
| 124 |
+
- `clear_direct_output_cache()`: Cache management
|
| 125 |
+
|
| 126 |
+
### 3. Data Models (`models.py`)
|
| 127 |
+
|
| 128 |
+
Pydantic models for type validation
|
| 129 |
+
|
| 130 |
+
### 4. Retriever Adapter (`retriever_adapter.py`)
|
| 131 |
+
|
| 132 |
+
Abstraction layer for managing different retriever configurations:
|
| 133 |
+
- Handles authentication
|
| 134 |
+
- Formats queries and filters
|
| 135 |
+
|
| 136 |
+
### 5. Utilities (`utils.py`)
|
| 137 |
+
|
| 138 |
+
Helper functions
|
| 139 |
+
|
| 140 |
+
#### Conversation Context Management
|
| 141 |
+
|
| 142 |
+
The `build_conversation_context()` function manages conversation history to provide relevant context to the generator while respecting token limits and conversation flow.
|
| 143 |
+
|
| 144 |
+
**Key Features:**
|
| 145 |
+
|
| 146 |
+
- **Context Selection**: Always includes the first user and assistant messages to maintain conversation context
|
| 147 |
+
- **Recent Turn Limiting**: Includes only the last N complete turns (user + assistant pairs) to focus on recent conversation (default: 3)
|
| 148 |
+
- **Character Limit Management**: Truncates to maximum character limits to prevent context overflow
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
**Function Parameters:**
|
| 152 |
+
|
| 153 |
+
```python
|
| 154 |
+
def build_conversation_context(
|
| 155 |
+
messages, # List of Message objects from conversation
|
| 156 |
+
max_turns: int = 3, # Maximum number of recent turns to include
|
| 157 |
+
max_chars: int = 8000 # Maximum total characters in context
|
| 158 |
+
) -> str
|
| 159 |
+
```
|
| 160 |
+
|
| 161 |
+
## Configuration
|
| 162 |
+
|
| 163 |
+
### Configuration File (`params.cfg`)
|
| 164 |
+
|
| 165 |
+
```ini
|
| 166 |
+
[file_processing]
|
| 167 |
+
# Enable direct output mode: when True, ingestor results are returned directly
|
| 168 |
+
# without going through the generator. When False, all files go through full RAG pipeline.
|
| 169 |
+
# This also prevents ChatUI from resending the file in the conversation history with each turn
|
| 170 |
+
# Note: File type validation is handled by the ChatUI frontend
|
| 171 |
+
DIRECT_OUTPUT = True
|
| 172 |
+
|
| 173 |
+
[conversation_history]
|
| 174 |
+
# Limit the context window for the conversation history
|
| 175 |
+
MAX_TURNS = 3
|
| 176 |
+
MAX_CHARS = 12000
|
| 177 |
+
|
| 178 |
+
[retriever]
|
| 179 |
+
RETRIEVER = https://giz-chatfed-retriever0-3.hf.space/
|
| 180 |
+
# Optional
|
| 181 |
+
COLLECTION_NAME = EUDR
|
| 182 |
+
|
| 183 |
+
[generator]
|
| 184 |
+
GENERATOR = https://giz-eudr-chabo-generator.hf.space
|
| 185 |
+
|
| 186 |
+
[ingestor]
|
| 187 |
+
INGESTOR = https://giz-eudr-chabo-ingestor.hf.space
|
| 188 |
+
|
| 189 |
+
[general]
|
| 190 |
+
# need to include this for HF inference endpoint limits
|
| 191 |
+
MAX_CONTEXT_CHARS = 15000
|
| 192 |
+
```
|
| 193 |
+
|
| 194 |
+
### Environment Variables
|
| 195 |
+
|
| 196 |
+
Create a `.env` file with:
|
| 197 |
+
|
| 198 |
+
```bash
|
| 199 |
+
# Required for private HuggingFace Spaces
|
| 200 |
+
HF_TOKEN=hf_xxxxxxxxxxxxxxxxxxxxx
|
| 201 |
+
|
| 202 |
+
```
|
| 203 |
+
|
| 204 |
+
### ChatUI Configuration
|
| 205 |
+
|
| 206 |
+
ChatUI `DOTENV_LOCAL` example deployment configuration:
|
| 207 |
+
|
| 208 |
+
```javascript
|
| 209 |
+
MODELS=`[
|
| 210 |
+
{
|
| 211 |
+
"name": "asistente_eudr",
|
| 212 |
+
"displayName": "Asistente EUDR",
|
| 213 |
+
"description": "Retrieval-augmented generation on EUDR Whisp API powered by ChatFed modules.",
|
| 214 |
+
"instructions": {
|
| 215 |
+
"title": "EUDR Asistente: Instructiones",
|
| 216 |
+
"content": "Hola, soy Asistente EUDR, un asistente conversacional basado en inteligencia artificial diseñado para ayudarle a comprender el cumplimiento y el análisis del Reglamento de la UE sobre la deforestación. Responderé a sus preguntas utilizando los informes EUDR y los archivos GeoJSON cargados.\n\n💡 **Cómo utilizarlo (panel a la derecha)**\n\n**Modo de uso:** elija entre subir un archivo GeoJSON para su análisis o consultar los informes EUDR filtrados por país.\n\n**Ejemplos:** seleccione entre preguntas de ejemplo seleccionadas de diferentes categorías.\n\n**Referencias:** consulte las fuentes de contenido utilizadas para la verificación de datos.\n\n⚠️ Para conocer las limitaciones y la información sobre la recopilación de datos, consulte la pestaña «Exención de responsibilidad».\n\n⚠️ Al utilizar esta aplicación, usted acepta que recopilemos estadísticas de uso (como preguntas formuladas, comentarios realizados, duración de la sesión, tipo de dispositivo e información geográfica anónima) para comprender el rendimiento y mejorar continuamente la herramienta, basándonos en nuestro interés legítimo por mejorar nuestros servicios."
|
| 217 |
+
},
|
| 218 |
+
"multimodal": true,
|
| 219 |
+
"multimodalAcceptedMimetypes": [
|
| 220 |
+
"application/geojson"
|
| 221 |
+
],
|
| 222 |
+
"chatPromptTemplate": "{{#each messages}}{{#ifUser}}{{content}}{{/ifUser}}{{#ifAssistant}}{{content}}{{/ifAssistant}}{{/each}}",
|
| 223 |
+
"parameters": {
|
| 224 |
+
"temperature": 0.0,
|
| 225 |
+
"max_new_tokens": 2048
|
| 226 |
+
},
|
| 227 |
+
"endpoints": [{
|
| 228 |
+
"type": "langserve-streaming",
|
| 229 |
+
"url": "https://giz-eudr-chabo-orchestrator.hf.space/chatfed-ui-stream",
|
| 230 |
+
"streamingFileUploadUrl": "https://giz-eudr-chabo-orchestrator.hf.space/chatfed-with-file-stream",
|
| 231 |
+
"inputKey": "text",
|
| 232 |
+
"fileInputKey": "files"
|
| 233 |
+
}]
|
| 234 |
+
}
|
| 235 |
+
]`
|
| 236 |
+
|
| 237 |
+
PUBLIC_ANNOUNCEMENT_BANNERS=`[
|
| 238 |
+
{
|
| 239 |
+
"title": "This is Chat Prototype for DSC users",
|
| 240 |
+
"linkTitle": "Keep it Clean"
|
| 241 |
+
}
|
| 242 |
+
]`
|
| 243 |
+
|
| 244 |
+
PUBLIC_APP_DISCLAIMER_MESSAGE="Disclaimer: AI is an area of active research with known problems such as biased generation and misinformation. Do not use this application for high-stakes decisions or advice. Do not insert your personal data, especially sensitive, like health data."
|
| 245 |
+
PUBLIC_APP_DESCRIPTION="Internal Chat-tool for DSC users for testing"
|
| 246 |
+
|
| 247 |
+
PUBLIC_APP_NAME="EUDR ChatUI"
|
| 248 |
+
ENABLE_ASSISTANTS=false
|
| 249 |
+
ENABLE_ASSISTANTS_RAG=false
|
| 250 |
+
COMMUNITY_TOOLS=false
|
| 251 |
+
MONGODB_URL=mongodb://localhost:27017
|
| 252 |
+
|
| 253 |
+
# Disable LLM-based title generation to prevent template queries
|
| 254 |
+
LLM_SUMMARIZATION=false
|
| 255 |
+
```
|
| 256 |
+
|
| 257 |
+
Key things to ensure here:
|
| 258 |
+
- multimodalAcceptedMimetypes: file types to accept for upload via ChatUI
|
| 259 |
+
- endpoints: orchestrator url + endpoints
|
| 260 |
+
|
| 261 |
+
## Deployment Guide
|
| 262 |
+
|
| 263 |
+
### Local Development
|
| 264 |
+
|
| 265 |
+
**Prerequisites:**
|
| 266 |
+
- Python 3.10+
|
| 267 |
+
- pip
|
| 268 |
+
|
| 269 |
+
**Steps:**
|
| 270 |
+
|
| 271 |
+
1. Clone the repository:
|
| 272 |
+
```bash
|
| 273 |
+
git clone <your-repo-url>
|
| 274 |
+
cd chabo-orchestrator
|
| 275 |
+
```
|
| 276 |
+
|
| 277 |
+
2. Install dependencies:
|
| 278 |
+
```bash
|
| 279 |
+
pip install -r requirements.txt
|
| 280 |
+
```
|
| 281 |
+
|
| 282 |
+
3. Configure the system:
|
| 283 |
+
```bash
|
| 284 |
+
# Create .env file
|
| 285 |
+
echo "HF_TOKEN=your_token_here" > .env
|
| 286 |
+
|
| 287 |
+
# Edit params.cfg with your service URLs
|
| 288 |
+
nano params.cfg
|
| 289 |
+
```
|
| 290 |
+
|
| 291 |
+
4. Run the application:
|
| 292 |
+
```bash
|
| 293 |
+
python app/main.py
|
| 294 |
+
```
|
| 295 |
+
|
| 296 |
+
5. Access interfaces:
|
| 297 |
+
- Gradio UI: http://localhost:7860/gradio
|
| 298 |
+
- API Docs: http://localhost:7860/docs
|
| 299 |
+
- Health Check: http://localhost:7860/health
|
| 300 |
+
|
| 301 |
+
### Docker Deployment
|
| 302 |
+
|
| 303 |
+
**Build the image:**
|
| 304 |
+
|
| 305 |
+
```bash
|
| 306 |
+
docker build -t chabo-orchestrator .
|
| 307 |
+
```
|
| 308 |
+
|
| 309 |
+
**Run the container:**
|
| 310 |
+
|
| 311 |
+
```bash
|
| 312 |
+
docker run -d \
|
| 313 |
+
--name chabo-orchestrator \
|
| 314 |
+
-p 7860:7860 \
|
| 315 |
+
chabo-orchestrator
|
| 316 |
+
```
|
| 317 |
+
|
| 318 |
+
### HuggingFace Spaces Deployment
|
| 319 |
+
|
| 320 |
+
**Repository Structure:**
|
| 321 |
+
```
|
| 322 |
+
your-space/
|
| 323 |
+
├── app/
|
| 324 |
+
│ ├── main.py
|
| 325 |
+
│ ├── nodes.py
|
| 326 |
+
│ ├── models.py
|
| 327 |
+
│ ├── retriever_adapter.py
|
| 328 |
+
│ └── utils.py
|
| 329 |
+
├── Dockerfile
|
| 330 |
+
├── requirements.txt
|
| 331 |
+
├── params.cfg
|
| 332 |
+
└── README.md
|
| 333 |
+
```
|
| 334 |
+
|
| 335 |
+
**Steps:**
|
| 336 |
+
|
| 337 |
+
1. Create a new Space on HuggingFace
|
| 338 |
+
2. Select "Docker" as the SDK
|
| 339 |
+
3. Push your code to the Space repository
|
| 340 |
+
4. Add secrets in Space settings:
|
| 341 |
+
- `HF_TOKEN`: Your HuggingFace token
|
| 342 |
+
5. The Space will automatically build and deploy
|
| 343 |
+
|
| 344 |
+
**Important:** Ensure all service URLs in `params.cfg` are publicly accessible.
|
| 345 |
+
|
| 346 |
+
### Docker Compose (Multi-Service)
|
| 347 |
+
|
| 348 |
+
Example orchestrated deployment for the entire Chabo stack (*NOTE - docker-compose will not run on Huggingface spaces*)
|
| 349 |
+
|
| 350 |
+
```yaml
|
| 351 |
+
version: '3.8'
|
| 352 |
+
|
| 353 |
+
services:
|
| 354 |
+
orchestrator:
|
| 355 |
+
build: ./orchestrator
|
| 356 |
+
ports:
|
| 357 |
+
- "7860:7860"
|
| 358 |
+
environment:
|
| 359 |
+
- HF_TOKEN=${HF_TOKEN}
|
| 360 |
+
- RETRIEVER=http://retriever:7861
|
| 361 |
+
- GENERATOR=http://generator:7862
|
| 362 |
+
- INGESTOR=http://ingestor:7863
|
| 363 |
+
depends_on:
|
| 364 |
+
- retriever
|
| 365 |
+
- generator
|
| 366 |
+
- ingestor
|
| 367 |
+
|
| 368 |
+
retriever:
|
| 369 |
+
build: ./retriever
|
| 370 |
+
ports:
|
| 371 |
+
- "7861:7861"
|
| 372 |
+
environment:
|
| 373 |
+
- QDRANT_API_KEY=${QDRANT_API_KEY}
|
| 374 |
+
|
| 375 |
+
generator:
|
| 376 |
+
build: ./generator
|
| 377 |
+
ports:
|
| 378 |
+
- "7862:7862"
|
| 379 |
+
environment:
|
| 380 |
+
- HF_TOKEN=${HF_TOKEN}
|
| 381 |
+
|
| 382 |
+
ingestor:
|
| 383 |
+
build: ./ingestor
|
| 384 |
+
ports:
|
| 385 |
+
- "7863:7863"
|
| 386 |
+
```
|
| 387 |
+
|
| 388 |
+
## API Reference
|
| 389 |
+
|
| 390 |
+
### Endpoints
|
| 391 |
+
|
| 392 |
+
#### Health Check
|
| 393 |
+
```
|
| 394 |
+
GET /health
|
| 395 |
+
```
|
| 396 |
+
Returns service health status.
|
| 397 |
+
|
| 398 |
+
**Response:**
|
| 399 |
+
```json
|
| 400 |
+
{
|
| 401 |
+
"status": "healthy"
|
| 402 |
+
}
|
| 403 |
+
```
|
| 404 |
+
|
| 405 |
+
#### Root Information
|
| 406 |
+
```
|
| 407 |
+
GET /
|
| 408 |
+
```
|
| 409 |
+
Returns API metadata and available endpoints.
|
| 410 |
+
|
| 411 |
+
#### Text Query (Streaming)
|
| 412 |
+
```
|
| 413 |
+
POST /chatfed-ui-stream/stream
|
| 414 |
+
Content-Type: application/json
|
| 415 |
+
```
|
| 416 |
+
|
| 417 |
+
**Request Body:**
|
| 418 |
+
```json
|
| 419 |
+
{
|
| 420 |
+
"input": {
|
| 421 |
+
"text": "What are EUDR requirements?"
|
| 422 |
+
}
|
| 423 |
+
}
|
| 424 |
+
```
|
| 425 |
+
|
| 426 |
+
**Response:** Server-Sent Events stream
|
| 427 |
+
```
|
| 428 |
+
event: data
|
| 429 |
+
data: "The EUDR requires..."
|
| 430 |
+
|
| 431 |
+
event: sources
|
| 432 |
+
data: {"sources": [...]}
|
| 433 |
+
|
| 434 |
+
event: end
|
| 435 |
+
data: ""
|
| 436 |
+
```
|
| 437 |
+
|
| 438 |
+
#### File Upload Query (Streaming)
|
| 439 |
+
```
|
| 440 |
+
POST /chatfed-with-file-stream/stream
|
| 441 |
+
Content-Type: application/json
|
| 442 |
+
```
|
| 443 |
+
|
| 444 |
+
**Request Body:**
|
| 445 |
+
```json
|
| 446 |
+
{
|
| 447 |
+
"input": {
|
| 448 |
+
"text": "Analyze this GeoJSON",
|
| 449 |
+
"files": [
|
| 450 |
+
{
|
| 451 |
+
"name": "boundaries.geojson",
|
| 452 |
+
"type": "base64",
|
| 453 |
+
"content": "base64_encoded_content"
|
| 454 |
+
}
|
| 455 |
+
]
|
| 456 |
+
}
|
| 457 |
+
}
|
| 458 |
+
```
|
| 459 |
+
|
| 460 |
+
#### Clear Cache
|
| 461 |
+
```
|
| 462 |
+
POST /clear-cache
|
| 463 |
+
```
|
| 464 |
+
Clears the direct output file cache.
|
| 465 |
+
|
| 466 |
+
**Response:**
|
| 467 |
+
```json
|
| 468 |
+
{
|
| 469 |
+
"status": "cache cleared"
|
| 470 |
+
}
|
| 471 |
+
```
|
| 472 |
+
|
| 473 |
+
### Gradio Interface
|
| 474 |
+
|
| 475 |
+
#### Interactive Query
|
| 476 |
+
|
| 477 |
+
Gradio's default API endpoint for UI interactions. If running on huggingface spaces, access via: https://[ORG_NAME]-[SPACE_NAME].hf.space/gradio/
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
## Troubleshooting
|
| 481 |
+
|
| 482 |
+
### Common Issues
|
| 483 |
+
|
| 484 |
+
#### 1. File Upload Fails
|
| 485 |
+
|
| 486 |
+
**Symptoms:** "Error reading file" or "Failed to decode uploaded file"
|
| 487 |
+
|
| 488 |
+
**Solutions:**
|
| 489 |
+
- Verify file is properly base64 encoded
|
| 490 |
+
- Check file size limits (default: varies by deployment)
|
| 491 |
+
- Ensure MIME type is in `multimodalAcceptedMimetypes`
|
| 492 |
+
|
| 493 |
+
#### 2. Slow Responses
|
| 494 |
+
|
| 495 |
+
**Symptoms:** Long wait times for responses
|
| 496 |
+
|
| 497 |
+
**Solutions:**
|
| 498 |
+
- Check network latency to external services
|
| 499 |
+
- Verify `MAX_CONTEXT_CHARS` isn't too high
|
| 500 |
+
- Consider enabling `DIRECT_OUTPUT` for suitable file types
|
| 501 |
+
- Check logs for retrieval/generation bottlenecks
|
| 502 |
+
|
| 503 |
+
#### 3. Cache Not Clearing
|
| 504 |
+
|
| 505 |
+
**Symptoms:** Same file shows cached results when it shouldn't
|
| 506 |
+
|
| 507 |
+
**Solutions:**
|
| 508 |
+
- Call `/clear-cache` endpoint
|
| 509 |
+
- Restart the service (clears in-memory cache)
|
| 510 |
+
- Check if `DIRECT_OUTPUT=True` in config
|
| 511 |
+
|
| 512 |
+
#### 4. Service Connection Errors
|
| 513 |
+
|
| 514 |
+
**Symptoms:** "Connection refused" or timeout errors
|
| 515 |
+
|
| 516 |
+
**Solutions:**
|
| 517 |
+
- Verify all service URLs in `params.cfg` are accessible
|
| 518 |
+
- Check HF_TOKEN is valid and has access to private spaces (*NOTE - THE ORCHESTRATOR CURRENTLY MUST BE PUBLIC*)
|
| 519 |
+
- Test each service independently with health checks
|
| 520 |
+
- Review firewall/network policies
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
### Version History
|
| 524 |
+
|
| 525 |
+
- **v1.0.0**: Initial release with LangGraph orchestration
|
| 526 |
+
- Current implementation supports streaming, caching, and dual-mode processing
|
| 527 |
+
|
| 528 |
+
---
|
| 529 |
+
|
| 530 |
+
**Documentation Last Updated:** 2025-10-01
|
| 531 |
+
**Compatible With:** Python 3.10+, LangGraph 0.2+, FastAPI 0.100+
|
| 532 |
+
"""
|
qdrant.png
ADDED
|
retriever.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
retriverText = """ This mciroservice integrates with the vector database to retrieve semantically relevant documents,\
|
| 2 |
+
with optional reranking for precision, ready for seamless use in ChaBo RAG workflows.
|
| 3 |
+
|
| 4 |
+
# Retriever and Reranker Microservice on Hugging Face Spaces
|
| 5 |
+
|
| 6 |
+
[ChaBo_Retrieval](https://huggingface.co/spaces/GIZ/chatfed_retriever0.3) hosts a Retrieval and Reranker mciroservice.\
|
| 7 |
+
Some of key feature of Retrieval service are:
|
| 8 |
+
- The embedding of the user query is done by retriever itself using Sentence-Transformer.
|
| 9 |
+
- ReRanker is available as optional component.
|
| 10 |
+
- This is rate determining step as the emedding of user query can be compute intensive if using dedicated model.
|
| 11 |
+
- Model config, Qdrant server url and other params can be set through \
|
| 12 |
+
[params.cfg](https://huggingface.co/spaces/GIZ/chatfed_retriever0.3/blob/main/params.cfg)
|
| 13 |
+
|
| 14 |
+
```
|
| 15 |
+
[vectorstore]
|
| 16 |
+
# Qdrant-Server usage:
|
| 17 |
+
PROVIDER = qdrant
|
| 18 |
+
URL = giz-chatfed-qdrantserver.hf.space
|
| 19 |
+
COLLECTION_NAME = EUDR
|
| 20 |
+
|
| 21 |
+
[embeddings]
|
| 22 |
+
MODEL_NAME = BAAI/bge-m3
|
| 23 |
+
|
| 24 |
+
[retriever]
|
| 25 |
+
TOP_K = 10
|
| 26 |
+
SCORE_THRESHOLD = 0.6
|
| 27 |
+
|
| 28 |
+
[reranker]
|
| 29 |
+
MODEL_NAME = BAAI/bge-reranker-v2-m3
|
| 30 |
+
TOP_K = 10
|
| 31 |
+
ENABLED = true
|
| 32 |
+
# use this to scale out the total docs retrieved prior to reranking (i.e. retriever top_k * TOP_K_SCALE_FACTOR)
|
| 33 |
+
TOP_K_SCALE_FACTOR = 2
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
**API documentation**: 1 API Endpoint
|
| 37 |
+
|
| 38 |
+
### api_name: /retrieve
|
| 39 |
+
|
| 40 |
+
Params:
|
| 41 |
+
- query(str): Required
|
| 42 |
+
- collection_name(str): collection_name in the Qdrant server which need to be queried. Defualts to None.
|
| 43 |
+
- filter_metadata(dict): metadata filtering for Qdrant vector store which will be
|
| 44 |
+
applied to the collection mentioned above. Defuals to None
|
| 45 |
+
|
| 46 |
+
Returns: List of retrieved context along with metadata as string,
|
| 47 |
+
where each context is dict with two key 'answer' and 'answer_metadata'
|
| 48 |
+
|
| 49 |
+
**How to Connect**
|
| 50 |
+
|
| 51 |
+
```python
|
| 52 |
+
from gradio_client import Client
|
| 53 |
+
|
| 54 |
+
client = Client("https://giz-chatfed-retriever0-3.hf.space/")
|
| 55 |
+
result = client.predict(
|
| 56 |
+
query="What is Circular Economy",
|
| 57 |
+
collection_name="Humboldt",
|
| 58 |
+
filter_metadata=None,
|
| 59 |
+
api_name="/retrieve"
|
| 60 |
+
)
|
| 61 |
+
```
|
| 62 |
+
For more info on Retriever and code base visit the following links:
|
| 63 |
+
- ChaBo_Retriever : [**ReadMe**](https://huggingface.co/spaces/GIZ/chatfed_retriever0.3/blob/main/README.md)
|
| 64 |
+
- ChaBo_Retriever: [**Codebase**](https://huggingface.co/spaces/GIZ/chatfed_retriever0.3/tree/main)"""
|
vectorDB.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
vectordbText = """
|
| 2 |
+
We will use the [Qdrant](https://qdrant.tech/documentation/) server deployment as microservice. \
|
| 3 |
+
You can either deploy it as individually or you can use it as one server to serve multiple \
|
| 4 |
+
chatbots (like in image below) by having multiple collections (multiple collection can also serve one chatbot)
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
# Qdrant Vector Database Server on Hugging Face Spaces
|
| 8 |
+
|
| 9 |
+
[ChaBo_QdrantServer](https://huggingface.co/spaces/GIZ/chatfed_QdrantServer/blob/main/README.md) Space hosts \
|
| 10 |
+
a Qdrant vector database instance. This is just a Infrastructural component and doesnt\
|
| 11 |
+
not serve any user application through its User Interface. However the admin task can be performed by\
|
| 12 |
+
accessing "<embedded space url>/dashboard" Ex:https://giz-chatfed-qdrantserver.hf.space/dashboard \
|
| 13 |
+
which is passsword protected.
|
| 14 |
+
|
| 15 |
+
**Persistence:** Data is stored persistently in the `/data/qdrant_data` directory due to enabled persistent storage.
|
| 16 |
+
|
| 17 |
+
**How to connect:**
|
| 18 |
+
From your client application (e.g., your retrieval microservice), use the `qdrant-client` \
|
| 19 |
+
with the host set to your Space's direct URL and the appropriate port:
|
| 20 |
+
|
| 21 |
+
```python
|
| 22 |
+
from qdrant_client import QdrantClient
|
| 23 |
+
|
| 24 |
+
# Replace with your actual Space URL (e.g., [https://your-username-qdrant-server.hf.space](https://your-username-qdrant-server.hf.space))
|
| 25 |
+
QDRANT_HOST = "giz-chatfed-qdrantserver.hf.space"
|
| 26 |
+
client = QdrantClient(
|
| 27 |
+
host = QDRANT_HOST,
|
| 28 |
+
port=443, # very important that port to be used for python client
|
| 29 |
+
https=True,
|
| 30 |
+
api_key = <QDRANT_API_KEY>,)
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
API Documentation: https://api.qdrant.tech/api-reference
|
| 34 |
+
|
| 35 |
+
"""
|