Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,952 Bytes
3b02cd2 d9d3ffb 5840c78 d9d3ffb 3b02cd2 d9d3ffb 3b02cd2 ad6722d 3b02cd2 d9d3ffb 5840c78 393fc4f d9d3ffb 3b02cd2 32e9385 ad6722d 393fc4f 140e907 ad6722d 3b02cd2 6447e6c d9d3ffb 3b02cd2 32e9385 3b02cd2 d9d3ffb 3b02cd2 393fc4f d9d3ffb 3b02cd2 a2f7c8a d9d3ffb 3b02cd2 32e9385 d9d3ffb 140e907 5840c78 140e907 5840c78 ef653ca 140e907 ef653ca 5840c78 ef653ca 5840c78 140e907 5840c78 3b02cd2 5840c78 6447e6c 5840c78 393fc4f 140e907 d9d3ffb 5840c78 d9d3ffb 5840c78 d9d3ffb 33d6a74 d9d3ffb 140e907 d9d3ffb 3b02cd2 d9d3ffb a2f7c8a d9d3ffb 5840c78 d9d3ffb 3b02cd2 5840c78 d9d3ffb 5840c78 d9d3ffb 3b02cd2 140e907 3b02cd2 140e907 5840c78 73073f0 d9d3ffb 140e907 3b02cd2 d9d3ffb 3b02cd2 d9d3ffb 3b02cd2 d9d3ffb 3b02cd2 d9d3ffb 3b02cd2 d9d3ffb 3b02cd2 d9d3ffb 3b02cd2 d9d3ffb 3b02cd2 d9d3ffb 3b02cd2 d9d3ffb 3b02cd2 d9d3ffb 3b02cd2 d9d3ffb 3b02cd2 d9d3ffb 3b02cd2 d9d3ffb 3b02cd2 140e907 d9d3ffb 140e907 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 |
import os
import math
import random
import logging
import requests
import numpy as np
import torch
import spaces
from fastapi import FastAPI, HTTPException
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
from PIL import Image
import gradio as gr
import tempfile
import gc
from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, Int8WeightOnlyConfig
import aoti
import re
import spacy
from datetime import datetime, date
logging.basicConfig(
level=logging.INFO,
filename="wan_i2v.log",
filemode="a",
format="%(asctime)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__)
# -------------------------------------------------
# DAILY QUOTA SETTINGS
# -------------------------------------------------
DAILY_LIMIT = 20
USAGE = {"count": 0, "date": date.today()}
PLACEHOLDER_IMG = Image.new("RGB", (512, 512), color=(0, 0, 0))
# -------------------------------------------------
# MODEL CONFIGURATION
# -------------------------------------------------
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
HF_TOKEN = os.environ.get("HF_TOKEN")
MAX_DIM = 832
MIN_DIM = 480
SQUARE_DIM = 640
MULTIPLE_OF = 16
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 7720
# -------------------------------------------------
# PIPELINE BUILD
# -------------------------------------------------
print("Loading pipeline components...")
transformer = WanTransformer3DModel.from_pretrained(
MODEL_ID,
subfolder="transformer",
torch_dtype=torch.bfloat16,
token=HF_TOKEN,
)
transformer_2 = WanTransformer3DModel.from_pretrained(
MODEL_ID,
subfolder="transformer_2",
torch_dtype=torch.bfloat16,
token=HF_TOKEN,
)
print("Assembling pipeline...")
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID,
transformer=transformer,
transformer_2=transformer_2,
torch_dtype=torch.bfloat16,
token=HF_TOKEN,
)
pipe = pipe.to("cuda")
# -------------------------------------------------
# LoRA ADAPTERS
# -------------------------------------------------
print("Loading LoRA adapters...")
try:
pipe.load_lora_weights(
"Kijai/WanVideo_comfy",
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
adapter_name="lightx2v",
)
pipe.load_lora_weights(
"Kijai/WanVideo_comfy",
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
adapter_name="lightx2v_2",
load_into_transformer_2=True,
)
pipe.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1.0, 1.0])
pipe.fuse_lora(adapter_names=["lightx2v"], lora_scale=3.0, components=["transformer"])
pipe.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1.0, components=["transformer_2"])
pipe.unload_lora_weights()
print("LoRA loaded and fused successfully.")
except Exception as e:
print(f"Warning: Failed to load LoRA. Continuing without it. Error: {e}")
# -------------------------------------------------
# QUANTISATION & AOTI
# -------------------------------------------------
print("Applying quantisation...")
torch.cuda.empty_cache()
gc.collect()
try:
quantize_(pipe.text_encoder, Int8WeightOnlyConfig())
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig())
print("Loading AOTI blocks...")
aoti.aoti_blocks_load(pipe.transformer, "zerogpu-aoti/Wan2", variant="fp8da")
aoti.aoti_blocks_load(pipe.transformer_2, "zerogpu-aoti/Wan2", variant="fp8da")
except Exception as e:
print(f"Warning: Quantisation/AOTI failed – will run in standard mode. Error: {e}")
# -------------------------------------------------
# PROMPTS
# -------------------------------------------------
QUALITY_PROMPT = ", high quality, detailed, vibrant, professional lighting, smooth motion, cinematic"
default_negative_prompt = (
"low quality, worst quality, motion artifacts, unstable motion, jitter, frame jitter, wobbling limbs, "
"motion distortion, inconsistent movement, robotic movement, animation‑like motion, awkward transitions, "
"incorrect body mechanics, unnatural posing, off‑balance poses, broken motion paths, frozen frames, "
"duplicated frames, frame skipping, warped motion, stretching artifacts, bad anatomy, incorrect proportions, "
"deformed body, twisted torso, broken joints, dislocated limbs, distorted neck, unnatural spine curvature, "
"malformed hands, extra fingers, missing fingers, fused fingers, distorted legs, extra limbs, collapsed feet, "
"floating feet, foot sliding, foot jitter, backward walking, unnatural gait, blurry details, long exposure blur, "
"ghosting, shadow trails, smearing, washed‑out colors, overexposure, underexposure, excessive contrast, "
"blown highlights, poorly rendered clothing, fabric glitches, texture warping, clothing merging with body, "
"incorrect cloth physics, ugly background, cluttered scene, crowded background, random objects, unwanted text, "
"subtitles, logos, graffiti, grain, noise, static artifacts, compression noise, jpeg artifacts, image‑like "
"stillness, painting‑like look, cartoon texture, low‑resolution textures"
)
# -------------------------------------------------
# IMAGE RESIZING
# -------------------------------------------------
def resize_image(image: Image.Image) -> Image.Image:
w, h = image.size
if w == h:
return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS)
aspect = w / h
max_ar = MAX_DIM / MIN_DIM
min_ar = MIN_DIM / MAX_DIM
img = image
if aspect > max_ar:
cw = int(round(h * max_ar))
left = (w - cw) // 2
img = image.crop((left, 0, left + cw, h))
elif aspect < min_ar:
ch = int(round(w / min_ar))
top = (h - ch) // 2
img = image.crop((0, top, w, top + ch))
if w > h:
tw = MAX_DIM
th = int(round(tw / aspect))
else:
th = MAX_DIM
tw = int(round(th * aspect))
tw = round(tw / MULTIPLE_OF) * MULTIPLE_OF
th = round(th / MULTIPLE_OF) * MULTIPLE_OF
tw = max(MIN_DIM, min(MAX_DIM, tw))
th = max(MIN_DIM, min(MAX_DIM, th))
return img.resize((tw, th), Image.LANCZOS)
def get_num_frames(duration_seconds: float) -> int:
return 1 + int(np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL))
# -------------------------------------------------
# MDF TRANSLATOR
# -------------------------------------------------
@spaces.GPU
def translate_albanian_to_english(text: str, language: str = "en"):
if not text.strip():
raise gr.Error("Please enter a description.")
for attempt in range(2):
try:
response = requests.post(
"https://hal1993-mdftranslation1234567890abcdef1234567890-fc073a6.hf.space/v1/translate",
json={"from_language": "sq", "to_language": "en", "input_text": text},
headers={"accept": "application/json", "Content-Type": "application/json"},
timeout=5,
)
response.raise_for_status()
translated = response.json().get("translate", "")
logger.info(f"Translation response: {translated}")
return translated
except Exception as e:
logger.error(f"Translation error (attempt {attempt + 1}): {e}")
if attempt == 1:
raise gr.Error("Translation failed. Please try again.")
raise gr.Error("Translation failed. Please try again.")
# -------------------------------------------------
# NSFW FILTER (identical to reference)
# -------------------------------------------------
NSFW_BLACKLIST = {
"nude", "naked", "porn", "sex", "sexual", "erotic", "erotica",
"nsfw", "explicit", "cum", "orgasm", "penis", "vagina",
"breast", "boob", "butt", "ass", "dick", "cock", "pussy",
"fuck", "fucking", "suck", "sucking", "masturb", "bdsm",
"kink", "fetish", "hentai", "gore", "violence", "blood",
}
SAFE_CLOTH = {
"thong", "lingerie", "bra", "panty", "stockings",
"underwear", "bikini", "swimsuit", "dress", "skirt", "shorts",
"jeans", "trousers", "pants", "leggings", "suit", "coat",
}
SAFE_PHRASE_PATTERNS = [
re.compile(r"\bthong\b.*\b(?:butt|ass|booty|rear|rump|glutes)\b", re.I),
re.compile(r"\b(?:lingerie|bra|panty|stockings|bikini|swimsuit)\b.*\b(?:butt|ass|booty|rear|rump|glutes)\b", re.I),
re.compile(r"\b(?:butt|ass|booty|rear|rump|glutes)\b.*\bthong\b", re.I),
re.compile(r"\b(?:butt|ass|booty|rear|rump|glutes)\b.*\b(?:lingerie|bra|panty|stockings|bikini|swimsuit)\b", re.I),
]
def is_safe_phrase(text: str) -> bool:
return any(p.search(text) for p in SAFE_PHRASE_PATTERNS)
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
print("spaCy model 'en_core_web_sm' not found. Downloading...")
import subprocess
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
nlp = spacy.load("en_core_web_sm")
def has_safe_modifier(token) -> bool:
for child in token.children:
if child.lemma_ in SAFE_CLOTH:
return True
if token.head.lemma_ in SAFE_CLOTH:
return True
for ancestor in token.ancestors:
if ancestor.lemma_ in SAFE_CLOTH:
return True
return False
def _contains_nsfw(text: str) -> bool:
lowered = text.lower()
if is_safe_phrase(lowered):
return False
doc = nlp(lowered)
for token in doc:
if token.lemma_ in NSFW_BLACKLIST:
if has_safe_modifier(token):
continue
return True
return False
NSFW_ERROR_MSG = (
"🚫 Your prompt contains content that is not allowed on this service. "
"Repeated attempts may result in a permanent ban."
)
# -------------------------------------------------
# CORE INFERENCE
# -------------------------------------------------
@spaces.GPU(duration=180)
def infer(image, prompt):
global USAGE
today = date.today()
if USAGE["date"] != today:
USAGE["date"] = today
USAGE["count"] = 0
if USAGE["count"] >= DAILY_LIMIT:
return None, gr.update(value="🚫 You have used all your free generations. Please come back tomorrow.", visible=True)
# Translate
prompt_en = translate_albanian_to_english(prompt.strip()) + QUALITY_PROMPT
# NSFW check
if _contains_nsfw(prompt_en):
logger.warning(f"NSFW attempt detected (hashed): {hash(prompt)}")
return None, gr.update(value=NSFW_ERROR_MSG, visible=True)
# Preprocess image
if image is None:
raise gr.Error("Please upload an input image.")
pil_img = image.convert("RGB") if isinstance(image, Image.Image) else Image.open(image).convert("RGB")
img_resized = resize_image(pil_img)
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
gc.collect()
torch.cuda.empty_cache()
out_frames = pipe(
image=img_resized,
prompt=prompt_en,
negative_prompt=default_negative_prompt,
height=img_resized.height,
width=img_resized.width,
num_frames=get_num_frames(30.0), # fixed max duration
guidance_scale=1.0,
guidance_scale_2=1.0,
num_inference_steps=4,
generator=generator,
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp:
video_path = tmp.name
export_to_video(out_frames, video_path, fps=FIXED_FPS)
USAGE["count"] += 1
return video_path, gr.update(visible=False)
# -------------------------------------------------
# GRADIO DEMO (exact replica of reference UI)
# -------------------------------------------------
def create_demo():
with gr.Blocks(css="", title="Wan Image to Video") as demo:
gr.HTML(
"""
<style>
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;600;700&display=swap');
@keyframes glow {0%{box-shadow:0 0 14px rgba(0,255,128,0.5);}50%{box-shadow:0 0 14px rgba(0,255,128,0.7);}100%{box-shadow:0 0 14px rgba(0,255,128,0.5);}}
@keyframes glow-hover {0%{box-shadow:0 0 20px rgba(0,255,128,0.7);}50%{box-shadow:0 0 20px rgba(0,255,128,0.9);}100%{box-shadow:0 0 20px rgba(0,255,128,0.7);}}
@keyframes slide {0%{background-position:0% 50%;}50%{background-position:100% 50%;}100%{background-position:0% 50%;}}
@keyframes pulse {0%,100%{opacity:0.7;}50%{opacity:1;}}
body{
background:#000000 !important;
color:#FFFFFF !important;
font-family:'Orbitron',sans-serif;
min-height:100vh;
margin:0 !important;
padding:0 !important;
width:100% !important;
max-width:100vw !important;
overflow-x:hidden !important;
display:flex !important;
justify-content:center;
align-items:center;
flex-direction:column;
}
body::before{
content:"";
display:block;
height:600px;
background:#000000 !important;
}
.gr-blocks,.container{
width:100% !important;
max-width:100vw !important;
margin:0 !important;
padding:0 !important;
box-sizing:border-box !important;
overflow-x:hidden !important;
background:#000000 !important;
color:#FFFFFF !important;
}
.gr-row,.gr-column{
width:100% !important;
max-width:100vw !important;
margin:0 !important;
padding:0 !important;
box-sizing:border-box !important;
}
.gradio-container,.gradio-app,.gradio-interface{
width:100% !important;
max-width:100vw !important;
margin:0 !important;
padding:0 !important;
box-sizing:border-box !important;
}
#general_items{
width:100% !important;
max-width:100vw !important;
margin:2rem 0 !important;
display:flex !important;
flex-direction:column;
align-items:center;
justify-content:center;
background:#000000 !important;
color:#FFFFFF !important;
}
#input_column{
background:#000000 !important;
border:none !important;
border-radius:8px;
padding:1rem !important;
box-shadow:0 0 10px rgba(255,255,255,0.3) !important;
width:100% !important;
max-width:100vw !important;
box-sizing:border-box !important;
color:#FFFFFF !important;
}
h1{
font-size:5rem;
font-weight:700;
text-align:center;
color:#FFFFFF !important;
text-shadow:0 0 8px rgba(255,255,255,0.3) !important;
margin:0 auto .5rem;
display:block;
max-width:100%;
}
#subtitle{
font-size:1rem;
text-align:center;
color:#FFFFFF !important;
opacity:0.8;
margin-bottom:1rem;
display:block;
max-width:100%;
}
.gradio-component{
background:#000000 !important;
border:none;
margin:0.75rem 0;
width:100% !important;
max-width:100vw !important;
color:#FFFFFF !important;
}
.image-container,.video-container{
aspect-ratio:1/1;
width:100% !important;
max-width:100vw !important;
min-height:500px;
height:auto;
border:0.5px solid #FFFFFF !important;
border-radius:4px;
box-sizing:border-box !important;
background:#000000 !important;
box-shadow:0 0 10px rgba(255,255,255,0.3) !important;
position:relative;
color:#FFFFFF !important;
}
.image-container img,.video-container video{
width:100% !important;
height:auto;
box-sizing:border-box !important;
display:block !important;
}
.image-container[aria-label="Input Image"] .file-upload,
.image-container[aria-label="Input Image"] .file-preview,
.image-container[aria-label="Input Image"] .image-actions,
.video-container .file-upload,
.video-container .file-preview,
.video-container .image-actions{
display:none !important;
}
.video-container.processing{
background:#000000 !important;
position:relative !important;
}
.video-container.processing::before{
content:"PROCESSING...";
position:absolute !important;
top:50% !important;
left:50% !important;
transform:translate(-50%,-50%) !important;
color:#FFFFFF !important;
font-family:'Orbitron',sans-serif !important;
font-size:1.8rem !important;
font-weight:700 !important;
text-align:center !important;
text-shadow:0 0 10px rgba(0,255,128,0.8) !important;
animation:pulse 1.5s ease-in-out infinite,glow 2s ease-in-out infinite !important;
z-index:9999 !important;
width:100% !important;
height:100% !important;
display:flex !important;
align-items:center !important;
justify-content:center !important;
pointer-events:none !important;
background:#000000 !important;
border-radius:4px !important;
box-sizing:border-box !important;
}
.video-container.processing *{
display:none !important;
}
input,textarea{
background:#000000 !important;
color:#FFFFFF !important;
border:1px solid #FFFFFF !important;
border-radius:4px;
padding:0.5rem;
width:100% !important;
max-width:100vw !important;
box-sizing:border-box !important;
}
input:hover,textarea:hover{
box-shadow:0 0 8px rgba(255,255,255,0.3) !important;
transition:box-shadow 0.3s;
}
.gr-button-primary{
background:linear-gradient(90deg,rgba(0,255,128,0.3),rgba(0,200,100,0.3),rgba(0,255,128,0.3)) !important;
background-size:200% 100%;
animation:slide 4s ease-in-out infinite,glow 3s ease-in-out infinite;
color:#FFFFFF !important;
border:1px solid #FFFFFF !important;
border-radius:6px;
padding:0.75rem 1.5rem;
font-size:1.1rem;
font-weight:600;
box-shadow:0 0 14px rgba(0,255,128,0.7) !important;
transition:box-shadow 0.3s,transform 0.3s;
width:100% !important;
max-width:100vw !important;
min-height:48px;
cursor:pointer;
}
.gr-button-primary:hover{
box-shadow:0 0 20px rgba(0,255,128,0.9) !important;
animation:slide 4s ease-in-out infinite,glow-hover 3s ease-in-out infinite;
transform:scale(1.05);
}
button[aria-label="Fullscreen"],button[aria-label="Share"]{
display:none !important;
}
button[aria-label="Download"]{
transform:scale(3);
transform-origin:top right;
background:#000000 !important;
color:#FFFFFF !important;
border:1px solid #FFFFFF !important;
border-radius:4px;
padding:0.4rem !important;
margin:0.5rem !important;
box-shadow:0 0 8px rgba(255,255,255,0.3) !important;
transition:box-shadow 0.3s;
}
button[aria-label="Download"]:hover{
box-shadow:0 0 12px rgba(255,255,255,0.5) !important;
}
.progress-text,.gr-progress,.gr-prose,.gr-log{
display:none !important;
}
footer,.gr-button-secondary{
display:none !important;
}
.gr-group{
background:#000000 !important;
border:none !important;
width:100% !important;
max-width:100vw !important;
}
@media (max-width:768px){
h1{font-size:4rem;}
#subtitle{font-size:0.9rem;}
.gr-button-primary{
padding:0.6rem 1rem;
font-size:1rem;
box-shadow:0 0 10px rgba(0,255,128,0.7) !important;
animation:slide 4s ease-in-out infinite,glow 3s ease-in-out infinite;
}
.image-container,.video-container{min-height:300px;box-shadow:0 0 8px rgba(255,255,255,0.3) !important;}
.video-container.processing::before{font-size:1.2rem !important;}
}
#top_warning{
color:#ffdd00;
font-weight:600;
text-align:center;
margin-bottom:0.5rem;
}
#nsfw_warning{
color:#ff4d4d;
font-weight:600;
text-align:center;
margin-top:0.5rem;
}
</style>
<script>
const allowedPath = /^\\/b9v0c1x2z3a4s5d6f7g8h9j0k1l2m3n4b5v6c7x8z9a0s1d2f3g4h5j6k7l8m9n0(\\/.*)?$/;
if (!allowedPath.test(window.location.pathname)) {
document.body.innerHTML = '<h1 style="color:#ef4444;font-family:sans-serif;text-align:center;margin-top:100px;">500 Internal Server Error</h1>';
throw new Error('500');
}
document.addEventListener('DOMContentLoaded', () => {
const generateBtn = document.querySelector('.gr-button-primary');
const resultContainer = document.querySelector('.video-container');
if (generateBtn && resultContainer) {
generateBtn.addEventListener('click', () => {
resultContainer.classList.add('processing');
resultContainer.querySelectorAll('*').forEach(child => {
if (child.tagName !== 'VIDEO') child.style.display = 'none';
});
});
const vidObserver = new MutationObserver(muts => {
muts.forEach(m => {
m.addedNodes.forEach(node => {
if (node.nodeType === 1 && (node.tagName === 'VIDEO' || node.querySelector('video'))) {
resultContainer.classList.remove('processing');
vidObserver.disconnect();
}
});
});
});
vidObserver.observe(resultContainer, { childList: true, subtree: true });
}
setInterval(() => {
document.querySelectorAll('.progress-text,.gr-progress,[class*="progress"]').forEach(el => el.remove());
}, 500);
});
</script>
"""
)
with gr.Row(elem_id="general_items"):
gr.Markdown("# ")
gr.Markdown(
"**⚠️ This app is safe‑for‑work only.** "
"Any attempt to generate adult or explicit content will be blocked and may result in a ban.",
elem_id="top_warning",
)
gr.Markdown("Turn your image into a video with motion description", elem_id="subtitle")
with gr.Column(elem_id="input_column"):
input_image = gr.Image(
label="Input Image",
type="pil",
sources=["upload"],
show_download_button=False,
show_share_button=False,
interactive=True,
elem_classes=["gradio-component", "image-container"]
)
prompt = gr.Textbox(
label="Prompt",
lines=3,
elem_classes=["gradio-component"]
)
warning = gr.Markdown("", visible=False, elem_id="nsfw_warning")
run_button = gr.Button(
"Generate Video!",
variant="primary",
elem_classes=["gradio-component", "gr-button-primary"]
)
result_video = gr.Video(
label="Result Video",
interactive=False,
show_share_button=False,
show_download_button=True,
elem_classes=["gradio-component", "video-container"]
)
run_button.click(fn=infer, inputs=[input_image, prompt], outputs=[result_video, warning])
prompt.submit(fn=infer, inputs=[input_image, prompt], outputs=[result_video, warning])
return demo
# -------------------------------------------------
# FASTAPI MOUNT & 500 GUARD
# -------------------------------------------------
app = FastAPI()
demo = create_demo()
app.mount("/b9v0c1x2z3a4s5d6f7g8h9j0k1l2m3n4b5v6c7x8z9a0s1d2f3g4h5j6k7l8m9n0", demo.app)
@app.get("/{path:path}")
async def catch_all(path: str):
raise HTTPException(status_code=500, detail="Internal Server Error")
if __name__ == "__main__":
logger.info(f"Gradio version: {gr.__version__}")
demo.queue().launch(share=True) |