Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,55 +4,45 @@ import spaces
|
|
| 4 |
import torch
|
| 5 |
import random
|
| 6 |
from PIL import Image
|
| 7 |
-
|
| 8 |
from diffusers import FluxKontextPipeline
|
| 9 |
from diffusers.utils import load_image
|
|
|
|
| 10 |
|
| 11 |
MAX_SEED = np.iinfo(np.int32).max
|
| 12 |
|
| 13 |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
|
| 14 |
|
| 15 |
@spaces.GPU
|
| 16 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
"""
|
| 18 |
Perform image editing using the FLUX.1 Kontext pipeline.
|
| 19 |
-
|
| 20 |
-
This function takes an input image and a text prompt to generate a modified version
|
| 21 |
-
of the image based on the provided instructions. It uses the FLUX.1 Kontext model
|
| 22 |
-
for contextual image editing tasks.
|
| 23 |
-
|
| 24 |
-
Args:
|
| 25 |
-
input_image (PIL.Image.Image): The input image to be edited. Will be converted
|
| 26 |
-
to RGB format if not already in that format.
|
| 27 |
-
prompt (str): Text description of the desired edit to apply to the image.
|
| 28 |
-
Examples: "Remove glasses", "Add a hat", "Change background to beach".
|
| 29 |
-
seed (int, optional): Random seed for reproducible generation. Defaults to 42.
|
| 30 |
-
Must be between 0 and MAX_SEED (2^31 - 1).
|
| 31 |
-
randomize_seed (bool, optional): If True, generates a random seed instead of
|
| 32 |
-
using the provided seed value. Defaults to False.
|
| 33 |
-
guidance_scale (float, optional): Controls how closely the model follows the
|
| 34 |
-
prompt. Higher values mean stronger adherence to the prompt but may reduce
|
| 35 |
-
image quality. Range: 1.0-10.0. Defaults to 2.5.
|
| 36 |
-
steps (int, optional): Controls how many steps to run the diffusion model for.
|
| 37 |
-
Range: 1-30. Defaults to 28.
|
| 38 |
-
progress (gr.Progress, optional): Gradio progress tracker for monitoring
|
| 39 |
-
generation progress. Defaults to gr.Progress(track_tqdm=True).
|
| 40 |
-
|
| 41 |
-
Returns:
|
| 42 |
-
tuple: A 3-tuple containing:
|
| 43 |
-
- PIL.Image.Image: The generated/edited image
|
| 44 |
-
- int: The seed value used for generation (useful when randomize_seed=True)
|
| 45 |
-
- gr.update: Gradio update object to make the reuse button visible
|
| 46 |
-
|
| 47 |
-
Example:
|
| 48 |
-
>>> edited_image, used_seed, button_update = infer(
|
| 49 |
-
... input_image=my_image,
|
| 50 |
-
... prompt="Add sunglasses",
|
| 51 |
-
... seed=123,
|
| 52 |
-
... randomize_seed=False,
|
| 53 |
-
... guidance_scale=2.5
|
| 54 |
-
... )
|
| 55 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
if randomize_seed:
|
| 57 |
seed = random.randint(0, MAX_SEED)
|
| 58 |
|
|
@@ -60,17 +50,19 @@ def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5
|
|
| 60 |
input_image = input_image.convert("RGB")
|
| 61 |
image = pipe(
|
| 62 |
image=input_image,
|
| 63 |
-
prompt=
|
| 64 |
guidance_scale=guidance_scale,
|
| 65 |
-
width
|
| 66 |
-
height
|
| 67 |
num_inference_steps=steps,
|
| 68 |
generator=torch.Generator().manual_seed(seed),
|
| 69 |
).images[0]
|
| 70 |
else:
|
| 71 |
image = pipe(
|
| 72 |
-
prompt=
|
| 73 |
guidance_scale=guidance_scale,
|
|
|
|
|
|
|
| 74 |
num_inference_steps=steps,
|
| 75 |
generator=torch.Generator().manual_seed(seed),
|
| 76 |
).images[0]
|
|
@@ -81,86 +73,94 @@ def infer_example(input_image, prompt):
|
|
| 81 |
image, seed, _ = infer(input_image, prompt)
|
| 82 |
return image, seed
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
step=0.1,
|
| 126 |
-
value=2.5,
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
-
steps = gr.Slider(
|
| 130 |
-
label="Steps",
|
| 131 |
-
minimum=1,
|
| 132 |
-
maximum=30,
|
| 133 |
-
value=28,
|
| 134 |
-
step=1
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
with gr.Column():
|
| 138 |
-
result = gr.Image(label="Result", show_label=False, interactive=False)
|
| 139 |
-
reuse_button = gr.Button("Reuse this image", visible=False)
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
examples = gr.Examples(
|
| 143 |
-
examples=[
|
| 144 |
-
["flowers.png", "turn the flowers into sunflowers"],
|
| 145 |
-
["monster.png", "make this monster ride a skateboard on the beach"],
|
| 146 |
-
["cat.png", "make this cat happy"]
|
| 147 |
-
],
|
| 148 |
-
inputs=[input_image, prompt],
|
| 149 |
-
outputs=[result, seed],
|
| 150 |
-
fn=infer_example,
|
| 151 |
-
cache_examples="lazy"
|
| 152 |
)
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
gr.on(
|
| 155 |
triggers=[run_button.click, prompt.submit],
|
| 156 |
-
fn
|
| 157 |
-
inputs
|
| 158 |
-
outputs
|
| 159 |
)
|
| 160 |
reuse_button.click(
|
| 161 |
-
fn
|
| 162 |
-
inputs
|
| 163 |
-
outputs
|
| 164 |
)
|
| 165 |
|
| 166 |
demo.launch(mcp_server=True)
|
|
|
|
| 4 |
import torch
|
| 5 |
import random
|
| 6 |
from PIL import Image
|
|
|
|
| 7 |
from diffusers import FluxKontextPipeline
|
| 8 |
from diffusers.utils import load_image
|
| 9 |
+
import requests
|
| 10 |
|
| 11 |
MAX_SEED = np.iinfo(np.int32).max
|
| 12 |
|
| 13 |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
|
| 14 |
|
| 15 |
@spaces.GPU
|
| 16 |
+
def translate_albanian_to_english(text):
|
| 17 |
+
"""Translate Albanian to English using sepioo-facebook-translation API."""
|
| 18 |
+
if not text.strip():
|
| 19 |
+
return ""
|
| 20 |
+
for attempt in range(2):
|
| 21 |
+
try:
|
| 22 |
+
response = requests.post(
|
| 23 |
+
"https://hal1993-mdftranslation1234567890abcdef1234567890-fc073a6.hf.space/v1/translate",
|
| 24 |
+
json={"from_language": "sq", "to_language": "en", "input_text": text},
|
| 25 |
+
headers={"accept": "application/json", "Content-Type": "application/json"},
|
| 26 |
+
timeout=5
|
| 27 |
+
)
|
| 28 |
+
response.raise_for_status()
|
| 29 |
+
translated = response.json().get("translate", "")
|
| 30 |
+
return translated
|
| 31 |
+
except Exception as e:
|
| 32 |
+
if attempt == 1:
|
| 33 |
+
raise gr.Error(f"Përkthimi dështoi: {str(e)}")
|
| 34 |
+
raise gr.Error("Përkthimi dështoi. Ju lutem provoni përsëri.")
|
| 35 |
+
|
| 36 |
+
@spaces.GPU
|
| 37 |
+
def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=12, progress=gr.Progress(track_tqdm=True)):
|
| 38 |
"""
|
| 39 |
Perform image editing using the FLUX.1 Kontext pipeline.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
"""
|
| 41 |
+
# Translate Albanian prompt to English
|
| 42 |
+
final_prompt = translate_albanian_to_english(prompt.strip()) if prompt.strip() else ""
|
| 43 |
+
if not final_prompt:
|
| 44 |
+
return None, seed, gr.Button(visible=False)
|
| 45 |
+
|
| 46 |
if randomize_seed:
|
| 47 |
seed = random.randint(0, MAX_SEED)
|
| 48 |
|
|
|
|
| 50 |
input_image = input_image.convert("RGB")
|
| 51 |
image = pipe(
|
| 52 |
image=input_image,
|
| 53 |
+
prompt=final_prompt,
|
| 54 |
guidance_scale=guidance_scale,
|
| 55 |
+
width=input_image.size[0],
|
| 56 |
+
height=input_image.size[1],
|
| 57 |
num_inference_steps=steps,
|
| 58 |
generator=torch.Generator().manual_seed(seed),
|
| 59 |
).images[0]
|
| 60 |
else:
|
| 61 |
image = pipe(
|
| 62 |
+
prompt=final_prompt,
|
| 63 |
guidance_scale=guidance_scale,
|
| 64 |
+
width=1024,
|
| 65 |
+
height=1024,
|
| 66 |
num_inference_steps=steps,
|
| 67 |
generator=torch.Generator().manual_seed(seed),
|
| 68 |
).images[0]
|
|
|
|
| 73 |
image, seed, _ = infer(input_image, prompt)
|
| 74 |
return image, seed
|
| 75 |
|
| 76 |
+
with gr.Blocks() as demo:
|
| 77 |
+
gr.HTML("""
|
| 78 |
+
<style>
|
| 79 |
+
body::before {
|
| 80 |
+
content: "";
|
| 81 |
+
display: block;
|
| 82 |
+
height: 320px;
|
| 83 |
+
background-color: var(--body-background-fill);
|
| 84 |
+
}
|
| 85 |
+
button[aria-label="Fullscreen"], button[aria-label="Fullscreen"]:hover {
|
| 86 |
+
display: none !important;
|
| 87 |
+
visibility: hidden !important;
|
| 88 |
+
opacity: 0 !important;
|
| 89 |
+
pointer-events: none !important;
|
| 90 |
+
}
|
| 91 |
+
button[aria-label="Share"], button[aria-label="Share"]:hover {
|
| 92 |
+
display: none !important;
|
| 93 |
+
}
|
| 94 |
+
button[aria-label="Download"] {
|
| 95 |
+
transform: scale(3);
|
| 96 |
+
transform-origin: top right;
|
| 97 |
+
margin: 0 !important;
|
| 98 |
+
padding: 6px !important;
|
| 99 |
+
}
|
| 100 |
+
</style>
|
| 101 |
+
""")
|
| 102 |
|
| 103 |
+
gr.Markdown("# Krijo Imazhe")
|
| 104 |
+
gr.Markdown("Gjenero imazhe të reja nga përshkrimin yt me fuqinë e inteligjencës artificiale.")
|
| 105 |
+
|
| 106 |
+
with gr.Column():
|
| 107 |
+
input_image = gr.Image(label="Ngarko Imazhin për Editim", type="pil")
|
| 108 |
+
prompt = gr.Textbox(
|
| 109 |
+
label="Përshkrimi",
|
| 110 |
+
placeholder="Shkruani përshkrimin këtu",
|
| 111 |
+
lines=3
|
| 112 |
+
)
|
| 113 |
+
run_button = gr.Button(value="Gjenero")
|
| 114 |
+
reuse_button = gr.Button("Rivendos këtë imazh", visible=False)
|
| 115 |
+
# Hidden advanced settings
|
| 116 |
+
seed = gr.Slider(
|
| 117 |
+
minimum=0,
|
| 118 |
+
maximum=MAX_SEED,
|
| 119 |
+
step=1,
|
| 120 |
+
value=0,
|
| 121 |
+
visible=False
|
| 122 |
+
)
|
| 123 |
+
randomize_seed = gr.Checkbox(value=True, visible=False)
|
| 124 |
+
guidance_scale = gr.Slider(
|
| 125 |
+
minimum=1,
|
| 126 |
+
maximum=10,
|
| 127 |
+
step=0.1,
|
| 128 |
+
value=2.5,
|
| 129 |
+
visible=False
|
| 130 |
+
)
|
| 131 |
+
steps = gr.Slider(
|
| 132 |
+
minimum=1,
|
| 133 |
+
maximum=30,
|
| 134 |
+
value=12,
|
| 135 |
+
step=1,
|
| 136 |
+
visible=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
)
|
| 138 |
+
|
| 139 |
+
with gr.Row():
|
| 140 |
+
result = gr.Image(label="Imazhi i Gjeneruar", interactive=False)
|
| 141 |
+
|
| 142 |
+
gr.Examples(
|
| 143 |
+
examples=[
|
| 144 |
+
["flowers.png", "ktheji lulet në luledielli"],
|
| 145 |
+
["monster.png", "bëje këtë përbindësh të hipë në një skateboard në plazh"],
|
| 146 |
+
["cat.png", "bëje këtë mace të lumtur"]
|
| 147 |
+
],
|
| 148 |
+
inputs=[input_image, prompt],
|
| 149 |
+
outputs=[result, seed],
|
| 150 |
+
fn=infer_example,
|
| 151 |
+
cache_examples="lazy"
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
gr.on(
|
| 155 |
triggers=[run_button.click, prompt.submit],
|
| 156 |
+
fn=infer,
|
| 157 |
+
inputs=[input_image, prompt, seed, randomize_seed, guidance_scale, steps],
|
| 158 |
+
outputs=[result, seed, reuse_button]
|
| 159 |
)
|
| 160 |
reuse_button.click(
|
| 161 |
+
fn=lambda image: image,
|
| 162 |
+
inputs=[result],
|
| 163 |
+
outputs=[input_image]
|
| 164 |
)
|
| 165 |
|
| 166 |
demo.launch(mcp_server=True)
|