Spaces:
Sleeping
Sleeping
| import torch | |
| from PIL import Image | |
| from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
| import gradio as gr | |
| # Set up the device (GPU or CPU) | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| # Load the fine-tuned model and processor from the Hugging Face repository | |
| model = VisionEncoderDecoderModel.from_pretrained("Heramb26/TC-OCR-Custom").to(device) | |
| processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten") | |
| def ocr_image(image): | |
| """ | |
| Perform OCR on an image using the loaded model. | |
| :param image: Input PIL image. | |
| :return: Extracted text. | |
| """ | |
| # Preprocess image and generate OCR text | |
| pixel_values = processor(image, return_tensors="pt").pixel_values.to(device) | |
| generated_ids = model.generate(pixel_values) | |
| generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| return generated_text | |
| # Create a Gradio interface | |
| interface = gr.Interface(fn=ocr_image, # Function to be called when an image is uploaded | |
| inputs=gr.Image(type="pil"), # Input is an image file (Gradio v3+ API) | |
| outputs="text", # Output is extracted text | |
| title="OCR Inference", # Title of the app | |
| description="Upload an image with handwritten text to extract the text.") # Description | |
| # Launch the Gradio app | |
| interface.launch() | |