Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- Dockerfile +20 -0
- main.py +29 -0
- qa.py +64 -0
- requirements.txt +7 -0
Dockerfile
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# you will also find guides on how best to write your Dockerfile
|
| 2 |
+
|
| 3 |
+
FROM python:3.9
|
| 4 |
+
|
| 5 |
+
WORKDIR /code
|
| 6 |
+
|
| 7 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 8 |
+
|
| 9 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 10 |
+
|
| 11 |
+
RUN useradd -m -u 1000 user
|
| 12 |
+
USER user
|
| 13 |
+
ENV HOME=/home/user \
|
| 14 |
+
PATH=/home/user/.local/bin:$PATH
|
| 15 |
+
|
| 16 |
+
WORKDIR $HOME/app
|
| 17 |
+
|
| 18 |
+
COPY --chown=user . $HOME/app
|
| 19 |
+
|
| 20 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Request
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
|
| 4 |
+
app = FastAPI()
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
app.add_middleware(
|
| 8 |
+
CORSMiddleware,
|
| 9 |
+
allow_origins=["*"],
|
| 10 |
+
allow_credentials=True,
|
| 11 |
+
allow_methods=["*"],
|
| 12 |
+
allow_headers=["*"],
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@app.get("/ping")
|
| 17 |
+
async def ping():
|
| 18 |
+
return "Hello, I am alive"
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@app.post("/qa")
|
| 22 |
+
async def section(request: Request):
|
| 23 |
+
|
| 24 |
+
data = await request.json()
|
| 25 |
+
|
| 26 |
+
from qa import query
|
| 27 |
+
answer = query(data["Question"])
|
| 28 |
+
|
| 29 |
+
return {"Answer": answer}
|
qa.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain.document_loaders import DirectoryLoader, TextLoader
|
| 2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 4 |
+
from langchain.llms import CTransformers
|
| 5 |
+
from langchain import PromptTemplate
|
| 6 |
+
from langchain.chains import RetrievalQA
|
| 7 |
+
from langchain.vectorstores import FAISS
|
| 8 |
+
import time
|
| 9 |
+
|
| 10 |
+
loader = DirectoryLoader("./infotext", glob="*.txt", loader_cls=TextLoader)
|
| 11 |
+
|
| 12 |
+
# interpret information in the documents
|
| 13 |
+
documents = loader.load()
|
| 14 |
+
splitter = RecursiveCharacterTextSplitter()
|
| 15 |
+
texts = splitter.split_documents(documents)
|
| 16 |
+
embeddings = HuggingFaceEmbeddings(
|
| 17 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 18 |
+
model_kwargs={'device': 'cpu'})
|
| 19 |
+
|
| 20 |
+
# create and save the local database
|
| 21 |
+
db = FAISS.from_documents(texts, embeddings)
|
| 22 |
+
db.save_local("faiss")
|
| 23 |
+
|
| 24 |
+
# prepare the template we will use when prompting the AI
|
| 25 |
+
template = """Use the following pieces of information to answer the user's question.
|
| 26 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
| 27 |
+
Context: {context}
|
| 28 |
+
Question: {question}
|
| 29 |
+
Only return the helpful answer below and nothing else.
|
| 30 |
+
Helpful answer:
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
# load the language model
|
| 34 |
+
config = {'max_new_tokens': 256, 'temperature': 0.01}
|
| 35 |
+
|
| 36 |
+
llm = CTransformers(model="TheBloke/Llama-2-13B-chat-GGML",
|
| 37 |
+
model_file="llama-2-13b-chat.ggmlv3.q2_K.bin",
|
| 38 |
+
model_type="llama",config=config)
|
| 39 |
+
|
| 40 |
+
# load the interpreted information from the local database
|
| 41 |
+
embeddings = HuggingFaceEmbeddings(
|
| 42 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 43 |
+
model_kwargs={'device': 'cpu'})
|
| 44 |
+
|
| 45 |
+
db = FAISS.load_local("faiss", embeddings)
|
| 46 |
+
|
| 47 |
+
# prepare a version of the llm pre-loaded with the local content
|
| 48 |
+
retriever = db.as_retriever(search_kwargs={'k': 2})
|
| 49 |
+
prompt = PromptTemplate(
|
| 50 |
+
template=template,
|
| 51 |
+
input_variables=['context', 'question'])
|
| 52 |
+
|
| 53 |
+
def query(question):
|
| 54 |
+
model = RetrievalQA.from_chain_type(llm=llm,
|
| 55 |
+
chain_type='stuff',
|
| 56 |
+
retriever=retriever,
|
| 57 |
+
return_source_documents=True,
|
| 58 |
+
chain_type_kwargs={'prompt': prompt})
|
| 59 |
+
time_start = time.time()
|
| 60 |
+
output = model({'query': question})
|
| 61 |
+
response = output["result"]
|
| 62 |
+
time_elapsed = time.time() - time_start
|
| 63 |
+
|
| 64 |
+
return [response, time_elapsed]
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
langchain
|
| 4 |
+
faiss-cpu
|
| 5 |
+
transformers
|
| 6 |
+
ctransformers>=0.2.24
|
| 7 |
+
sentence-transformers
|