Spaces:
Build error
Build error
| import gradio as gr | |
| import torch | |
| import transformers | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from PIL import Image | |
| import warnings | |
| # disable some warnings | |
| transformers.logging.set_verbosity_error() | |
| transformers.logging.disable_progress_bar() | |
| warnings.filterwarnings('ignore') | |
| # Set device to GPU if available, else CPU | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| print(f"Using device: {device}") | |
| model_name = 'cognitivecomputations/dolphin-vision-72b' | |
| # create model and load it to the specified device | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.float16, | |
| device_map="auto", | |
| trust_remote_code=True | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_name, | |
| trust_remote_code=True | |
| ) | |
| def inference(prompt, image, temperature, beam_size, system_instruction): | |
| messages = [ | |
| {"role": "system", "content": system_instruction}, | |
| {"role": "user", "content": f'<image>\n{prompt}'} | |
| ] | |
| text = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')] | |
| input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0).to(device) | |
| image_tensor = model.process_images([image], model.config).to(device) | |
| # Add debug prints | |
| print(f"Device of model: {next(model.parameters()).device}") | |
| print(f"Device of input_ids: {input_ids.device}") | |
| print(f"Device of image_tensor: {image_tensor.device}") | |
| # generate | |
| with torch.cuda.amp.autocast(): | |
| output_ids = model.generate( | |
| input_ids, | |
| images=image_tensor, | |
| max_new_tokens=1024, | |
| temperature=temperature, | |
| num_beams=beam_size, | |
| use_cache=True | |
| )[0] | |
| return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip() | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| system_instruction = gr.Textbox( | |
| label="System Instruction", | |
| value="You are Dolphin, a helpful AI assistant", | |
| lines=2 | |
| ) | |
| prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail") | |
| image_input = gr.Image(label="Image", type="pil") | |
| temperature_input = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") | |
| beam_size_input = gr.Slider(minimum=1, maximum=10, value=4, step=1, label="Beam Size") | |
| submit_button = gr.Button("Submit") | |
| with gr.Column(): | |
| output_text = gr.Textbox(label="Output") | |
| submit_button.click( | |
| fn=inference, | |
| inputs=[prompt_input, image_input, temperature_input, beam_size_input, system_instruction], | |
| outputs=output_text | |
| ) | |
| demo.launch(share=True) |