Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,7 +14,7 @@ warnings.filterwarnings('ignore')
|
|
| 14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
print(f"Using device: {device}")
|
| 16 |
|
| 17 |
-
model_name = 'cognitivecomputations/dolphin-vision-
|
| 18 |
|
| 19 |
# create model and load it to the specified device
|
| 20 |
model = AutoModelForCausalLM.from_pretrained(
|
|
@@ -29,8 +29,9 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
| 29 |
trust_remote_code=True
|
| 30 |
)
|
| 31 |
|
| 32 |
-
def inference(prompt, image, temperature, beam_size):
|
| 33 |
messages = [
|
|
|
|
| 34 |
{"role": "user", "content": f'<image>\n{prompt}'}
|
| 35 |
]
|
| 36 |
text = tokenizer.apply_chat_template(
|
|
@@ -65,6 +66,11 @@ def inference(prompt, image, temperature, beam_size):
|
|
| 65 |
with gr.Blocks() as demo:
|
| 66 |
with gr.Row():
|
| 67 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail")
|
| 69 |
image_input = gr.Image(label="Image", type="pil")
|
| 70 |
temperature_input = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
|
|
@@ -75,7 +81,7 @@ with gr.Blocks() as demo:
|
|
| 75 |
|
| 76 |
submit_button.click(
|
| 77 |
fn=inference,
|
| 78 |
-
inputs=[prompt_input, image_input, temperature_input, beam_size_input],
|
| 79 |
outputs=output_text
|
| 80 |
)
|
| 81 |
|
|
|
|
| 14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
print(f"Using device: {device}")
|
| 16 |
|
| 17 |
+
model_name = 'cognitivecomputations/dolphin-vision-7b'
|
| 18 |
|
| 19 |
# create model and load it to the specified device
|
| 20 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 29 |
trust_remote_code=True
|
| 30 |
)
|
| 31 |
|
| 32 |
+
def inference(prompt, image, temperature, beam_size, system_instruction):
|
| 33 |
messages = [
|
| 34 |
+
{"role": "system", "content": system_instruction},
|
| 35 |
{"role": "user", "content": f'<image>\n{prompt}'}
|
| 36 |
]
|
| 37 |
text = tokenizer.apply_chat_template(
|
|
|
|
| 66 |
with gr.Blocks() as demo:
|
| 67 |
with gr.Row():
|
| 68 |
with gr.Column():
|
| 69 |
+
system_instruction = gr.Textbox(
|
| 70 |
+
label="System Instruction",
|
| 71 |
+
value="You are Dolphin, a helpful AI assistant",
|
| 72 |
+
lines=2
|
| 73 |
+
)
|
| 74 |
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe this image in detail")
|
| 75 |
image_input = gr.Image(label="Image", type="pil")
|
| 76 |
temperature_input = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
|
|
|
|
| 81 |
|
| 82 |
submit_button.click(
|
| 83 |
fn=inference,
|
| 84 |
+
inputs=[prompt_input, image_input, temperature_input, beam_size_input, system_instruction],
|
| 85 |
outputs=output_text
|
| 86 |
)
|
| 87 |
|