import gradio as gr import mlx_whisper def transcribe(audio): text = mlx_whisper.transcribe( audio, path_or_hf="Kimang18/whisper-tiny-khmer-mlx-fp32", fp16=False, condition_on_previous_text=False, )['text'] return text iface = gr.Interface( fn=transcribe, inputs=gr.Audio(type="filepath", waveform_options={"sample_rate": 16000}), outputs="text", title="Whisper Tiny Khmer", description="Realtime demo for Khmer speech transcription using a fine-tuned Whisper tiny model.", ) iface.launch(share=False)