import requests import pandas as pd import gradio as gr from transformers import MarianMTModel, MarianTokenizer # Fetch and parse language options from the provided URL url = "https://huggingface.co/Lenylvt/LanguageISO/resolve/main/iso.md" response = requests.get(url) # Assuming the response content is a Markdown table, convert it to a DataFrame df = pd.read_csv(url, delimiter="|", skiprows=2, header=None).dropna(axis=1, how='all') df.columns = ['ISO 639-1', 'ISO 639-2', 'Language Name', 'Native Name'] df['ISO 639-1'] = df['ISO 639-1'].str.strip() # Prepare language options for the dropdown language_options = [(row['ISO 639-1'], f"{row['Language Name']} ({row['ISO 639-1']})") for index, row in df.iterrows()] # Your translate_text function and Gradio interface setup goes here # Replace the previous static language_options list with the dynamic one created above # Example translate_text function placeholder def translate_text(text, source_language, target_language): return "Translation function implementation" # Create dropdowns for source and target languages, using only the codes for value source_language_dropdown = gr.Dropdown(choices=language_options, label="Source Language") target_language_dropdown = gr.Dropdown(choices=language_options, label="Target Language") # Define the interface iface = gr.Interface( fn=translate_text, inputs=[gr.Textbox(lines=2, placeholder="Enter text to translate..."), source_language_dropdown, target_language_dropdown], outputs=gr.Textbox(), title="Text Translator with Dynamic Language Options", description="Select source and target languages to translate text." ) # Launch the app iface.launch()