Spaces:
Running
Running
File size: 26,818 Bytes
7470dab 1a07fd9 bcd43d2 1a07fd9 fdd7abf 1a07fd9 7470dab 1a07fd9 7470dab fdd7abf 63ffd27 fdd7abf 1a07fd9 a89fb74 1a07fd9 fdd7abf a89fb74 1a07fd9 03c3c58 1a07fd9 c89f178 1a07fd9 c89f178 a89fb74 1a07fd9 c89f178 1a07fd9 c89f178 1a07fd9 c89f178 1a07fd9 f3d39f1 7fc1dcf 1a07fd9 ae8d588 c89f178 ae8d588 1a07fd9 c89f178 1a07fd9 b4f6cc7 1a07fd9 fdd7abf 1a07fd9 f5b42b6 1a07fd9 ae8d588 1a07fd9 f5b42b6 1a07fd9 f5b42b6 1a07fd9 f5b42b6 1a07fd9 fd11c29 1a07fd9 f5b42b6 1a07fd9 fd11c29 1a07fd9 fd11c29 1a07fd9 fd11c29 1a07fd9 fd11c29 1a07fd9 fd11c29 1a07fd9 fd11c29 1a07fd9 f5b42b6 1a07fd9 b4f6cc7 fd11c29 1a07fd9 b4f6cc7 1a07fd9 b4f6cc7 f3d39f1 1a07fd9 f3d39f1 1a07fd9 b4f6cc7 1a07fd9 f3d39f1 1a07fd9 ad7da09 1a07fd9 bcd43d2 1a07fd9 8ba79f5 1a07fd9 8ba79f5 1a07fd9 fd11c29 1a07fd9 f3d39f1 1a07fd9 f3d39f1 1a07fd9 fdd7abf 63ffd27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
import gradio as gr
from gradio_pdf import PDF
import os
import sys
import spaces
import json
import uuid
import pandas as pd
import asyncio
from datetime import datetime
from dotenv import load_dotenv
# from mcp import ClientSession, StdioServerParameters
# from mcp.client.stdio import stdio_client
from huggingface_hub import HfApi, hf_hub_download, upload_file
# Professional PDF Libraries
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.enums import TA_JUSTIFY, TA_CENTER
from mcp import ClientSession
from mcp.client.sse import sse_client
# FastMCP SSE app is mounted at /mcp -> net path /mcp/sse
MCP_SSE_URL = "http://127.0.0.1:7860/mcp/sse"
# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
# --- CONFIG ---
DATASET_REPO = "daniel-was-taken/hugging_hack"
# SERVER_PATH = "./server.py"
# --- HELPER CLASSES ---
class LibraryManager:
def __init__(self):
self.api = HfApi(token=HF_TOKEN)
self.local_file = "library.json"
def fetch_library(self):
# Try to fetch from HF hub first. If that fails, read a local copy if present.
try:
path = hf_hub_download(repo_id=DATASET_REPO, filename=self.local_file, repo_type="dataset", token=HF_TOKEN)
with open(path, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception:
# Fallback: load local file if exists (useful when HF_TOKEN missing or upload failed)
if os.path.exists(self.local_file):
try:
with open(self.local_file, 'r', encoding='utf-8') as f:
return json.load(f)
except Exception:
return []
return []
def get_pdf_path(self, pdf_filename):
try:
if os.path.exists(pdf_filename): return os.path.abspath(pdf_filename)
# Try hub download; if that fails, return None so caller can regenerate locally
try:
return hf_hub_download(repo_id=DATASET_REPO, filename=pdf_filename, repo_type="dataset", token=HF_TOKEN)
except Exception:
return None
except: return None
def save_novel(self, title, author, genre, content, local_pdf_path):
library = self.fetch_library()
pdf_filename = os.path.basename(local_pdf_path)
# Try to upload the PDF first (if token provided); if upload fails, record that
pdf_uploaded = False
if HF_TOKEN:
try:
self.api.upload_file(path_or_fileobj=local_pdf_path, path_in_repo=pdf_filename, repo_id=DATASET_REPO, repo_type="dataset")
pdf_uploaded = True
except Exception as e:
print(f"[LibraryManager] PDF upload failed: {e}")
pdf_uploaded = False
novel_entry = {
"id": str(uuid.uuid4())[:8],
"title": title, "author": author, "genre": genre, "likes": 0,
"timestamp": datetime.now().isoformat(),
"content": content, "pdf_filename": pdf_filename
}
library.insert(0, novel_entry)
# Sync library.json to repo (or at least save locally)
sync_ok = self._sync_hub(library)
if sync_ok:
return "Published successfully!"
else:
# If sync failed but PDF upload succeeded we still want to surface that to the user
if pdf_uploaded:
return "Published locally but failed to sync library to the Hub. Check HF_TOKEN and repo permissions."
return "Publish failed: unable to sync to Hugging Face Hub. Ensure HF_TOKEN is set and has repo write permissions."
def like_novel(self, novel_id, liked_session, request: gr.Request):
# if request is None or request.username is None:
# return self.get_leaderboard(), "β οΈ Login to HF to like.", None
library = self.fetch_library()
updated_likes = 0
msg = ""
# Toggle Logic
if novel_id in liked_session:
# Unlike
for book in library:
if book['id'] == novel_id:
book['likes'] = max(0, book['likes'] - 1)
updated_likes = book['likes']
break
liked_session.remove(novel_id)
msg = "π Unliked"
else:
# Like
for book in library:
if book['id'] == novel_id:
book['likes'] += 1
updated_likes = book['likes']
break
liked_session.append(novel_id)
msg = "β€οΈ Liked!"
sync_ok = self._sync_hub(library)
if not sync_ok:
# Append warning to user-facing message
msg = msg + " β Warning: failed to sync like to Hugging Face Hub."
return self.get_leaderboard(), msg, updated_likes
def _sync_hub(self, data):
# Always write a local copy first
try:
with open(self.local_file, "w", encoding='utf-8') as f:
json.dump(data, f, ensure_ascii=False, indent=2)
except Exception as e:
print(f"[LibraryManager] Failed to write local library file: {e}")
return False
# If no token is provided, we cannot push to the hub. Return False to indicate no sync.
if not HF_TOKEN:
print("[LibraryManager] HF_TOKEN not provided; skipping hub upload.")
return False
try:
self.api.upload_file(path_or_fileobj=self.local_file, path_in_repo=self.local_file, repo_id=DATASET_REPO, repo_type="dataset")
return True
except Exception as e:
print(f"[LibraryManager] Failed to upload library.json to hub: {e}")
return False
def get_leaderboard(self):
library = self.fetch_library()
library.sort(key=lambda x: x.get('likes', 0), reverse=True)
return [[b['title'], b['author'], b['genre'], b['likes'], b['id'], b.get('content', ''), b.get('pdf_filename', '')] for b in library]
def create_typeset_pdf(title, author, raw_text):
filename = f"novel_{uuid.uuid4().hex[:6]}.pdf"
doc = SimpleDocTemplate(filename, pagesize=letter, rightMargin=72, leftMargin=72, topMargin=72, bottomMargin=72)
styles = getSampleStyleSheet()
# FIX: Use unique names to avoid KeyError if styles are added multiple times
# Checking if style exists or just using a safe name convention
if 'CustomJustify' not in styles:
styles.add(ParagraphStyle(name='CustomJustify', alignment=TA_JUSTIFY, fontName='Times-Roman', fontSize=12, leading=16, spaceAfter=12))
if 'CustomHeader' not in styles:
styles.add(ParagraphStyle(name='CustomHeader', alignment=TA_CENTER, fontName='Times-Bold', fontSize=18, leading=22, spaceAfter=24, spaceBefore=48))
if 'CustomTitle' not in styles:
styles.add(ParagraphStyle(name='CustomTitle', alignment=TA_CENTER, fontName='Times-Bold', fontSize=32, leading=40, spaceAfter=10, spaceBefore=200))
if 'CustomAuthor' not in styles:
styles.add(ParagraphStyle(name='CustomAuthor', alignment=TA_CENTER, fontName='Times-Italic', fontSize=16, leading=20, spaceAfter=100))
Story = []
Story.append(Paragraph(title, styles["CustomTitle"]))
Story.append(Paragraph(f"By {author}", styles["CustomAuthor"]))
Story.append(PageBreak())
lines = raw_text.split('\n')
for line in lines:
line = line.strip()
if not line: continue
if line.startswith("## "):
Story.append(PageBreak())
Story.append(Paragraph(line.replace("## ", ""), styles["CustomHeader"]))
else:
Story.append(Paragraph(line, styles["CustomJustify"]))
doc.build(Story)
return os.path.abspath(filename)
# --- MCP AGENT SETUP ---
# server_params = StdioServerParameters(command=sys.executable, args=[SERVER_PATH], env=os.environ.copy())
# --- DYNAMIC FETCH LOGIC ---
async def fetch_nebius_ui(api_key):
if not api_key: return gr.update(choices=[])
async with sse_client(MCP_SSE_URL) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
try:
res = await session.call_tool("fetch_nebius_models_tool", {"api_key": api_key})
models = json.loads(res.content[0].text)
return gr.update(choices=models, value=models[0] if models else None)
except: return gr.update(choices=["meta-llama/Meta-Llama-3.3-70B-Instruct"])
async def fetch_gemini_ui(api_key):
if not api_key: return gr.update(choices=[])
async with sse_client(MCP_SSE_URL) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
try:
res = await session.call_tool("fetch_gemini_models_tool", {"api_key": api_key})
models = json.loads(res.content[0].text)
return gr.update(choices=models, value=models[0] if models else None)
except: return gr.update(choices=["gemini-2.5-flash"])
async def fetch_claude_ui(api_key):
if not api_key: return gr.update(choices=[])
async with sse_client(MCP_SSE_URL) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
try:
res = await session.call_tool("fetch_anthropic_models_tool", {"api_key": api_key})
models = json.loads(res.content[0].text)
return gr.update(choices=models, value=models[0] if models else None)
except: return gr.update(choices=["claude-4-5-sonnet"])
async def fetch_elevenlabs_data_ui(api_key):
if not api_key: return gr.update(choices=[]), {}, gr.update(choices=[])
async with sse_client(MCP_SSE_URL) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
try:
res = await session.call_tool("fetch_elevenlabs_data_tool", {"api_key": api_key})
data = json.loads(res.content[0].text)
voices_map = data.get("voices", {})
voice_names = list(voices_map.keys())
models_list = data.get("models", [])
return (
gr.update(choices=voice_names, value=voice_names[0] if voice_names else None),
voices_map,
gr.update(choices=models_list, value="eleven_multilingual_v2" if "eleven_multilingual_v2" in models_list else models_list[0])
)
except:
return gr.update(choices=[]), {}, gr.update(choices=["eleven_monolingual_v2"])
# --- WRAPPER FOR SYNC CLICK EVENT (FIXES COROUTINE ERROR) ---
async def fetch_models_ui_wrapper(provider, k_n, k_g, k_c):
"""Wrapper to route model fetching asynchronously and AWAIT results."""
if provider == "Nebius":
return await fetch_nebius_ui(k_n)
elif provider == "Google Gemini":
return await fetch_gemini_ui(k_g)
elif provider == "Anthropic Claude":
return await fetch_claude_ui(k_c)
return gr.update(choices=[])
# --- ONE-CLICK AGENT FLOW ---
async def run_one_click_novel(seed, mys, rom, hor, sci, lit, format_type, writing_style, length, provider, model, voice_name, el_model, voices_map, neb_key, gem_key, claude_key, aud_key):
if not seed: yield "Please enter a story seed.", None, None, None, None; return
active_txt_key = neb_key if provider == "Nebius" else (gem_key if provider == "Google Gemini" else claude_key)
if not active_txt_key: yield f"Error: {provider} API Key is missing.", None, None, None, None; return
# Genre & Style
genres = {"Mystery": mys, "Romance": rom, "Horror": hor, "Sci-Fi": sci, "Literary": lit}
sorted_genres = sorted(genres.items(), key=lambda x: x[1], reverse=True)
genre_str = ", ".join([f"{v}% {k}" for k, v in sorted_genres if v > 0])
status_log = f"π Starting Engine ({provider} | {format_type})...\n"
raw_text_for_pdf = ""
raw_text_for_audio = ""
generated_title = "Untitled"
yield status_log, None, generated_title, raw_text_for_pdf, raw_text_for_audio
async with sse_client(MCP_SSE_URL) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
# PHASE 1: OUTLINE
status_log += f"π Phase 1: Planning {format_type}...\n"
yield status_log, None, generated_title, raw_text_for_pdf, raw_text_for_audio
try:
res = await session.call_tool("generate_story_plan", {
"seed": seed, "format_type": format_type, "genre_profile": genre_str,
"provider": provider, "model": model, "api_key": active_txt_key
})
outline_raw = res.content[0].text
try:
plan_data = json.loads(outline_raw)
generated_title = plan_data.get("book_title", "Untitled")
parts = plan_data.get("parts", [])
except:
generated_title = "Generated Work"
parts = []
status_log += f"β
Structure Ready: '{generated_title}' ({len(parts)} Parts).\n"
yield status_log, None, generated_title, raw_text_for_pdf, raw_text_for_audio
except Exception as e:
status_log += f"β Outline Error: {e}\n"
yield status_log, None, generated_title, raw_text_for_pdf, raw_text_for_audio
return
# PHASE 2: WRITE
voice_id = voices_map.get(voice_name) if voices_map else None
for i, part in enumerate(parts):
title = part.get('title', f'Part {i+1}')
description = part.get('description', '')
status_log += f"βοΈ Writing Part {i+1}: {title}...\n"
yield status_log, None, generated_title, raw_text_for_pdf, raw_text_for_audio
try:
w_res = await session.call_tool("write_content_segment", {
"title": title, "description": description,
"format_type": format_type,
"style_guide": f"{writing_style}. Genre: {genre_str}", "length": length,
"provider": provider, "model": model, "api_key": active_txt_key
})
text = w_res.content[0].text
raw_text_for_pdf += f"\n\n## {title}\n\n{text}"
raw_text_for_audio += f"{title}. {text}\n\n"
yield status_log, None, generated_title, raw_text_for_pdf, raw_text_for_audio
except Exception as e:
status_log += f"β Error Part {i+1}: {e}\n"
# PHASE 3: PDF
status_log += "π Binding PDF...\n"
final_pdf = create_typeset_pdf(generated_title, "Anonymous AI", raw_text_for_pdf)
status_log += "π Complete!"
yield status_log, final_pdf, generated_title, raw_text_for_pdf, raw_text_for_audio
# --- AUDIO WRAPPER ---
async def generate_custom_audio(text, voice_name, el_model, voices_map, api_key):
if not text: return None, "No text provided."
if not api_key: return None, "No ElevenLabs Key."
voice_id = voices_map.get(voice_name) if voices_map else None
if not voice_id: return None, "Voice not found. Fetch voices first."
async with sse_client(MCP_SSE_URL) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
try:
res = await session.call_tool("generate_audio_narration", {
"text": text, "voice_id": voice_id, "model_id": el_model, "api_key": api_key
})
return res.content[0].text, "Audio Generated!"
except Exception as e: return None, f"Error: {e}"
# --- UI WRAPPER ---
async def _ui_wrapper(*args):
async for update in run_one_click_novel(*args):
yield update
# --- SOCIAL FUNCTIONS ---
lib_mgr = LibraryManager()
def get_first_chapter(audio_text: str):
"""Extract the first chapter/segment suitable for narration.
The generator appends each part as: "{Title}. {text}\n\n" so splitting
on double-newline and returning the first non-empty chunk yields the
first chapter (title + content). Returns empty string if no text.
"""
if not audio_text:
return ""
# Normalize line endings and split on blank line separators
chunks = [c.strip() for c in audio_text.replace('\r\n', '\n').split('\n\n') if c.strip()]
return chunks[0] if chunks else audio_text
def submit_novel_to_lib(user_title, user_author, auto_title, raw_text, pdf_path):
if not raw_text: return "Error: No content to publish."
final_title = user_title if user_title.strip() else auto_title
final_author = user_author if user_author.strip() else "Anonymous"
return lib_mgr.save_novel(final_title, final_author, "Mixed", raw_text, pdf_path)
def refresh_library():
return lib_mgr.get_leaderboard()
def select_book_from_leaderboard(evt: gr.SelectData, current_data, liked_session):
# FIX: Use iloc for position-based access to avoid warnings
row_data = current_data.iloc[evt.index[0]]
novel_title = row_data[0]
novel_author = row_data[1]
novel_id = row_data[4]
novel_content = row_data[5] # Hidden content
pdf_filename = row_data[6] # Hidden filename
# Try fetching existing PDF first, else regenerate
pdf_path = lib_mgr.get_pdf_path(pdf_filename)
if not pdf_path or not os.path.exists(pdf_path):
pdf_path = create_typeset_pdf(novel_title, novel_author, novel_content)
# Determine like button label from session
btn_label = "π Unlike" if novel_id in liked_session else "β€οΈ Like this Story"
return pdf_path, novel_id, f"π Reading: {novel_title}", gr.update(value=btn_label)
def vote_current_book(novel_id, liked_session, request: gr.Request):
# If no book is selected, return the current leaderboard, an error message,
# and a safe default button label.
if not novel_id:
return lib_mgr.get_leaderboard(), "No book selected!", gr.update(value="β€οΈ Like this Story")
# lib_mgr.like_novel returns (leaderboard, msg, updated_likes)
leaderboard_data, msg, _ = lib_mgr.like_novel(novel_id, liked_session, request)
# After toggling, check session to decide label
btn_label = "π Unlike" if novel_id in liked_session else "β€οΈ Like this Story"
return leaderboard_data, msg, gr.update(value=btn_label)
# --- LAYOUT ---
with gr.Blocks(title="Infinite Library") as demo:
liked_session = gr.State([])
current_book_id = gr.State(None)
hidden_raw_text = gr.State("")
hidden_audio_text = gr.State("")
voices_map_state = gr.State({})
gr.Markdown("# ποΈ The Infinite Library")
with gr.Row():
# LEFT SIDEBAR
with gr.Column(scale=1, variant="panel"):
gr.Markdown("### π API Access")
key_neb = gr.Textbox(label="Nebius API Key", type="password", placeholder="sk-...")
key_gem = gr.Textbox(label="Google Gemini API Key", type="password", placeholder="AIza...")
key_claude = gr.Textbox(label="Anthropic API Key", type="password", placeholder="sk-ant...")
key_aud = gr.Textbox(label="ElevenLabs Key", type="password", placeholder="sk-...")
gr.Markdown("### βοΈ Engine")
provider_radio = gr.Radio(["Nebius", "Google Gemini", "Anthropic Claude"], value="Nebius", label="Provider", info="Select a provider and click fetch\n (Ensure API key is set above for the provider)")
# Dynamic Model Fetching
with gr.Row():
model_drop = gr.Dropdown(["meta-llama/Meta-Llama-3.3-70B-Instruct"], label="Text Model", scale=2)
fetch_models_btn = gr.Button("π Fetch", scale=1)
# Use specific wrapper to avoid Coroutine error
fetch_models_btn.click(
fetch_models_ui_wrapper,
inputs=[provider_radio, key_neb, key_gem, key_claude], outputs=[model_drop]
)
gr.Markdown("### ποΈ ElevenLabs Settings")
with gr.Row():
el_model_drop = gr.Dropdown(["eleven_multilingual_v2"], label="Audio Model", scale=1)
voice_drop = gr.Dropdown([], label="Voice", scale=1)
fetch_voices_btn = gr.Button("π Fetch", scale=1)
fetch_voices_btn.click(fetch_elevenlabs_data_ui, inputs=[key_aud], outputs=[voice_drop, voices_map_state, el_model_drop])
gr.Markdown("### π¨ Format & Style")
format_drop = gr.Dropdown(["Novel", "Short Story", "Novella", "Poem", "Essay", "Screenplay"], value="Novel", label="Format")
style_drop = gr.Dropdown(
["Cinematic Thriller", "Hemingway (Minimalist)", "Jane Austen (Regency)",
"Stephen King (Horror)", "Gen Z Internet Slang", "Shakespearean Drama",
"Douglas Adams (Absurdist)", "Lovecraftian (Eldritch)", "Hard Sci-Fi (Technical)"],
value="Cinematic Thriller", label="Writing Style"
)
len_drop = gr.Dropdown(["Short", "Medium", "Long"], value="Medium", label="Segment Length")
gr.Markdown("### 𧬠Genre Blender")
s_mys = gr.Slider(0, 100, label="Mystery", value=20, info="Puzzles, clues, suspense")
s_rom = gr.Slider(0, 100, label="Romance", value=10, info="Relationships, emotion, drama")
s_hor = gr.Slider(0, 100, label="Horror", value=10, info="Fear, tension, supernatural")
s_sci = gr.Slider(0, 100, label="Sci-Fi", value=60, info="Future, tech, space")
s_lit = gr.Slider(0, 100, label="Literary", value=10, info="Prose focus, metaphor, depth")
# RIGHT MAIN
with gr.Column(scale=3):
with gr.Tabs():
# TAB 1: GENERATE
with gr.TabItem("βοΈ Studio"):
seed_input = gr.Textbox(label="Story Seed", placeholder="A robot discovers it has a soul...", lines=3)
gen_btn = gr.Button("π Generate", variant="primary")
status_box = gr.Textbox(label="Live Log", interactive=False, lines=4)
pdf_display = PDF(label="eBook Preview", height=600)
with gr.Accordion("ποΈ Audio Studio", open=False):
gr.Markdown("Select text to narrate or play the full story.")
custom_audio_text = gr.Textbox(label="Text to Narrate", lines=3)
with gr.Row():
load_full_btn = gr.Button("Load Full Story")
play_custom_btn = gr.Button("βΆοΈ Play Selection", variant="primary")
custom_audio_player = gr.Audio(label="Audio Output")
audio_status = gr.Textbox(label="Audio Status", interactive=False)
gr.Markdown("### π Publish to Library")
with gr.Row():
pub_title = gr.Textbox(label="Title", placeholder="Auto-filled")
pub_author = gr.Textbox(label="Author", placeholder="Anonymous")
submit_btn = gr.Button("Publish")
submit_msg = gr.Textbox(label="Status", interactive=False)
# TAB 2: SOCIAL
with gr.TabItem("π Social Library"):
gr.Markdown("### π Community Bookshelf")
refresh_btn = gr.Button("π Refresh Library")
with gr.Row():
with gr.Column(scale=1):
leaderboard = gr.Dataframe(
headers=["Title", "Author", "Genre", "Likes", "ID", "Content", "File"],
datatype=["str", "str", "str", "number", "str", "str", "str"],
interactive=False,
label="Click a book to Read"
)
with gr.Column(scale=1):
social_status = gr.Markdown("### Select a book to read")
social_reader = PDF(label="Reader", height=600, scale=0.1)
like_btn = gr.Button("β€οΈ Like this Story", variant="primary")
like_msg = gr.Textbox(label="Status", interactive=False)
# --- WIRING ---
gen_btn.click(
_ui_wrapper,
inputs=[seed_input, s_mys, s_rom, s_hor, s_sci, s_lit, format_drop, style_drop, len_drop, provider_radio, model_drop, voice_drop, el_model_drop, voices_map_state, key_neb, key_gem, key_claude, key_aud],
outputs=[status_box, pdf_display, pub_title, hidden_raw_text, hidden_audio_text]
)
load_full_btn.click(get_first_chapter, inputs=[hidden_audio_text], outputs=[custom_audio_text])
play_custom_btn.click(
generate_custom_audio,
inputs=[custom_audio_text, voice_drop, el_model_drop, voices_map_state, key_aud],
outputs=[custom_audio_player, audio_status]
)
submit_btn.click(
submit_novel_to_lib,
inputs=[pub_title, pub_author, pub_title, hidden_raw_text, pdf_display],
outputs=[submit_msg]
)
refresh_btn.click(refresh_library, outputs=[leaderboard])
# When a row is selected, also pass the session state so we can set the button label
leaderboard.select(select_book_from_leaderboard, inputs=[leaderboard, liked_session], outputs=[social_reader, current_book_id, social_status, like_btn])
# Update leaderboard, status message, and the like button label when toggling
like_btn.click(vote_current_book, inputs=[current_book_id, liked_session], outputs=[leaderboard, like_msg, like_btn])
# if __name__ == "__main__":
# demo.queue().launch(mcp_server=True,)
|