Spaces:
Running
Running
File size: 10,852 Bytes
5ab83b1 67dd7c1 31d8a94 5ab83b1 31d8a94 5ab83b1 31d8a94 5ab83b1 1bf203f 2d2c8d9 cc81417 5ab83b1 31d8a94 2d2c8d9 42055ce 2d2c8d9 31d8a94 2d2c8d9 31d8a94 2d2c8d9 42055ce 31d8a94 3429441 31d8a94 cc81417 31d8a94 48d17fb 3a397d1 2d2c8d9 48d17fb 3a397d1 48d17fb 4164e22 2d2c8d9 48d17fb 16812d0 48d17fb 2d2c8d9 48d17fb 2d2c8d9 48d17fb 16812d0 48d17fb 244ca27 48d17fb 31d8a94 2d2c8d9 31d8a94 3429441 cc81417 31d8a94 2d2c8d9 31d8a94 5ab83b1 cc81417 31d8a94 c2e1a11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import numpy as np
import pandas as pd
import torch
from transformers import HubertModel
import torchaudio
from scipy.stats import zscore
from librosa.sequence import dtw as lib_dtw
import gradio as gr
import spaces
from itertools import combinations
import os
def mut_normalize_sequences(sq1, sq2, normalize: bool):
"""
Normalize the sequences together by z-scoring each dimension.
sq1: numpy array of shape (t1, d)
sq2: numpy array of shape (t2, d)
normalize: if True, normalize the sequences together
"""
if normalize:
sq1 = np.copy(sq1)
sq2 = np.copy(sq2)
len_sq1 = sq1.shape[0]
arr = np.concatenate((sq1, sq2), axis=0)
for dim in range(sq1.shape[1]):
arr[:, dim] = zscore(arr[:, dim])
sq1 = arr[:len_sq1, :]
sq2 = arr[len_sq1:, :]
return sq1, sq2
def librosa_dtw(sq1, sq2):
"""
Compute the Dynamic Time Warping distance between two sequences.
sq1: numpy array of shape (t1, d)
sq2: numpy array of shape (t2, d)
"""
return lib_dtw(sq1.transpose(), sq2.transpose())[0][-1, -1]
def time_txt(time, time_frame=5):
if time % time_frame == 0:
return f"{round(time * 0.02, 2)}"
return ""
def create_df(feats, speaker_len, names):
cols = [f"val {i}" for i in range(feats.shape[1])]
df = pd.DataFrame(feats, columns=cols)
df['idx'] = df.index
time_index = {i: speaker_len[i] for i in range(len(speaker_len))}
com_time_index = {i: sum(speaker_len[:i]) for i in range(len(speaker_len))}
df_speaker_count = pd.Series(time_index)
df_speaker_count = df_speaker_count.reindex(df_speaker_count.index.repeat(df_speaker_count.to_numpy())).rename_axis(
'speaker_id').reset_index()
df['speaker_id'] = df_speaker_count['speaker_id']
df['speaker_len'] = df['speaker_id'].apply(lambda row: speaker_len[row])
df['com_sum'] = df['speaker_id'].apply(lambda i: com_time_index[i])
df['speaker'] = df['speaker_id'].apply(lambda i: names[i])
df['time'] = df['idx'] - df['com_sum']
df['time_txt'] = df[['time', 'speaker_len']].apply(lambda row: time_txt(row['time'], time_frame), axis=1)
assert len(df.loc[df['speaker'] == -1]) == 0
assert len(df_speaker_count) == len(df)
df_subset = df.copy()
data_subset = df_subset[cols].values
return data_subset, df_subset, cols
def calc_distance(df_subset, speaker1, speaker2, cols):
features_speaker1 = df_subset[df_subset['speaker'] == speaker1][cols].to_numpy()
features_speaker2 = df_subset[df_subset['speaker'] == speaker2][cols].to_numpy()
features_speaker1, features_speaker2 = mut_normalize_sequences(features_speaker1, features_speaker2, True)
distance = librosa_dtw(features_speaker1, features_speaker2)
distance = distance / (len(features_speaker1) + len(features_speaker2))
return distance
# Model's label rate is 0.02 seconds. To not overflow the plot, time is shown every 5 samples (0.1 seconds).
# To change that, change "time_frame" below.
time_frame = 5
# @spaces.GPU(duration=120)
def grMeasureDistance(wav_paths, map_file):
map_df = pd.read_csv(map_file)
#for index, row in map_df.iterrows():
# gr.Info(row['File1'].astype(str))
if wav_paths is None:
gr.Warning("Please upload some sound files!")
return None
seed = 31415
# Load wav files
expected_sr = 16000
wavs = []
for wav_path in wav_paths:
wav, sr = torchaudio.load(wav_path)
if sr != expected_sr:
print(f"Sampling rate of {wav_path} is not {expected_sr} -> Resampling the file")
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=expected_sr)
wav = resampler(wav)
wav.squeeze()
wavs.append(wav)
# Generate Features
device_name = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device_name)
print(f'Running on {device_name}')
model = HubertModel.from_pretrained("facebook/hubert-base-ls960")
features = None
speaker_len = []
layer = 12
names = [f.rsplit(".", 1)[0] for f in wav_paths]
# Not batched to know the actual seqence shape
for wav in wavs:
wav_features = model(wav, return_dict=True, output_hidden_states=True).hidden_states[
layer].squeeze().detach().numpy()
features = wav_features if features is None else np.concatenate([features, wav_features], axis=0)
speaker_len.append(wav_features.shape[0])
# Create & Fill a dataframe with the details
data_subset, df_subset, hubert_feature_columns = create_df(features, speaker_len, names)
# Evaluate Distance of all speaker pairs
distances_list = []
#wav_pairs = list(combinations(names, 2))
wav_pairs = []
for index, row in map_df.iterrows():
#file1_index = find_substring_index(names, row['S1'])
#file2_index = find_substring_index(names, row['S2'])
file1_index = find_exactstring_index(names, row['S1'])
file2_index = find_exactstring_index(names, row['S2'])
if(file1_index != -1 and file2_index != -1):
wav_pairs.append((names[file1_index], names[file2_index]))
#print(len(wav_pairs))
for wav_pair in wav_pairs:
S1 = wav_pair[0]
S2 = wav_pair[1]
#print("*** " + S1 + " *** " + S2 + " ***")
# FULL DIMENSIONALITY
distance = calc_distance(df_subset, S1, S2, hubert_feature_columns)
distances_list.append([os.path.basename(S1), os.path.basename(S2), distance])
return distances_list
def find_substring_index(string_list, substring):
for index, string in enumerate(string_list):
if substring in string:
return index
return -1
def find_exactstring_index(string_list, substring):
for index, string in enumerate(string_list):
if substring == os.path.basename(string):
return index
return -1
#csv export function
def export_csv(d):
if(len(d.iloc[0,0])>0):
d.to_csv("output.csv")
return gr.File(value="output.csv", visible=True)
def clearInterface():
return gr.File(interactive=False, visible=False), gr.Dataframe(value=None)
#main GradIO interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# PS3-PDM: Perceptual Similarity Space for Speech-Pairwise Distance Matrix
## Project
- Perceptual Similarity Space for Speech
- Supported by the National Science Foundation (DRL 2219843) and Binational Science Foundation (2022618)
## Description
Takes a set of utterance files (.wav format) and a two column .csv *map file*. Generates pair-wise distances of the corresponding trajectories in HuBERT embedding spaces. Methods are based on Kim et al. (2025) and Chernyak et al. (2024). We report distances for embeddings in the original embedding space of transformer layer 12, without any form of dimensionality reduction.
""")
with gr.Accordion("Click for more details", open=False):
gr.Markdown(
"""
## Project team
- [Matt Goldrick](https://faculty.wcas.northwestern.edu/matt-goldrick/)
- [Yossi Keshet](https://keshet.net.technion.ac.il/)
- [Ann Bradlow](https://faculty.wcas.northwestern.edu/ann-bradlow/)
- [Seung-Eun Kim](https://seungeun-kim.github.io/)
- [Roni Chernyak](https://bronichern.github.io/)
- [Chun Liang Chan](https://staff.wcas.northwestern.edu/clc500/)
## Requirements
- All speech files must be in a single channel .wav format. (Note: It is recommended to normalize the loudness of the files.)
- Stereo or multi channel audio files should be reduced to a single channel before processing. A [Praat](https://www.fon.hum.uva.nl/praat/) script that extracts a single channel from a directory of .wav files is available [here](https://huggingface.co/spaces/MLSpeech/perceptual-similarity/resolve/main/extractSingleChannel.praat).
- All speech files that are being compared must contain productions of the identical linguistic content (i.e., same words in same order).
- For example, the files may contain productions of a given sentence by different talkers, or by a single talker under different conditions.
- Note that while the utility will return distance values for files with different content the interpretation of these values is meaningless.
## Usage
- Upload wav files.
- Upload csv *map file* that contains two columns with the headers "S1" and "S2".
| S1 | S2 |
| --------------- | --------------- |
| my_sentence_1_1 | my_sentence_1_2 |
| my_sentence_2_1 | my_sentence_2_2 |
| etc... | etc... |
- Example csv map file available [here](https://huggingface.co/spaces/MLSpeech/perceptual-similarity/resolve/main/example.csv)
- Each cell should contain the name of a wav file that was uploaded **without the ".wav" extension**
- Distances will be measured by comparing the files in the "S1" column to the files in the "S2" column
- Click 'run' to get distances.
- Output (download in .csv format) consists of a table with 4 columns (index, S1, S2, distance)
## Capacity limits
- Processing time is approximately 7 times the duration of the input audio files. For example, a minute of audio can take up to 7 minutes to process. If processing is taking longer than expected, please refresh the page and reupload your files.
- Ocassionally the app may fail when uploading a large number of files in a single session. Consider running in smaller batches if possible.
- Networks with slower upload speeds may experience reduced performance.
## References
- Kim, S-E, Chernyak, B. R., Keshet, J., Goldrick, M., & Bradlow, A. R. (2025). Predicting relative intelligibility from inter-talker distances in a perceptual similarity space for speech. Psychonomic Bulletin and Review. https://doi.org/10.3758/s13423-025-02652-2
- [for full-dimensional data and analysis of Kim et al. (2025), [see this OSF](https://doi.org/10.17605/osf.io/v5tru) repository] Kim, S.-E., Goldrick, M., & Bradlow, A. R. (2025). Predicting relative talker intelligibility using HuBERT perceptual similarity space distances (full-dimension). https://doi.org/10.17605/osf.io/v5tru
- Chernyak, B. R., Bradlow, A. R., Keshet, J., & Goldrick, M., & (2024). A perceptual similarity space for speech based on self-supervised speech representations. Journal of the Acoustical Society of America, 155(6), 3915-3929.
"""
)
with gr.Row():
inputFiles = gr.File(label="wav files", file_count="multiple", file_types=[".wav"])
mapFile = gr.File(label="map file", file_count="single", file_types=[".csv", ".txt"])
with gr.Column():
runbtn = gr.Button("Run")
csv = gr.File(interactive=False, visible=False)
dataframe = gr.Dataframe(headers=["S1", "S2", "distance"], visible=True, row_count=[1, 'dynamic'])
runbtn.click(fn=grMeasureDistance, inputs=[inputFiles, mapFile], outputs=dataframe)
dataframe.change(export_csv, inputs=dataframe, outputs=csv)
inputFiles.change(fn=clearInterface, inputs=None, outputs=[csv, dataframe])
if __name__ == "__main__":
demo.launch(ssr_mode=False)
|