|
|
from typing import List, Optional |
|
|
import requests |
|
|
|
|
|
import logging |
|
|
|
|
|
from haystack import Document, component |
|
|
from haystack.lazy_imports import LazyImport |
|
|
from PIL import Image |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
with LazyImport(message="Run 'pip install transformers[torch,sentencepiece]'") as torch_and_transformers_import: |
|
|
import torch |
|
|
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer, BlipProcessor, BlipForConditionalGeneration |
|
|
from PIL import Image |
|
|
|
|
|
@component |
|
|
class ImageCaptioner: |
|
|
def __init__( |
|
|
self, |
|
|
model_name: str = "Salesforce/blip-image-captioning-base", |
|
|
): |
|
|
torch_and_transformers_import.check() |
|
|
self.model_name = model_name |
|
|
|
|
|
if model_name == "nlpconnect/vit-gpt2-image-captioning": |
|
|
self.model = VisionEncoderDecoderModel.from_pretrained(model_name) |
|
|
self.feature_extractor = ViTImageProcessor.from_pretrained(model_name) |
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
max_length = 16 |
|
|
num_beams = 4 |
|
|
self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams} |
|
|
else: |
|
|
self.processor = BlipProcessor.from_pretrained(model_name) |
|
|
self.model = BlipForConditionalGeneration.from_pretrained(model_name) |
|
|
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
self.model.to(self.device) |
|
|
|
|
|
@component.output_types(caption=str) |
|
|
def run(self, image_file_path: str) -> List[Document]: |
|
|
|
|
|
i_image = Image.open(image_file_path) |
|
|
if i_image.mode != "RGB": |
|
|
i_image = i_image.convert(mode="RGB") |
|
|
|
|
|
preds = [] |
|
|
if self.model_name == "nlpconnect/vit-gpt2-image-captioning": |
|
|
pixel_values = self.feature_extractor(images=[i_image], return_tensors="pt").pixel_values |
|
|
pixel_values = pixel_values.to(self.device) |
|
|
|
|
|
output_ids = self.model.generate(pixel_values, **self.gen_kwargs) |
|
|
|
|
|
preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
|
preds = [pred.strip() for pred in preds] |
|
|
else: |
|
|
|
|
|
inputs = self.processor([i_image], return_tensors="pt") |
|
|
output_ids = self.model.generate(**inputs) |
|
|
preds = self.processor.batch_decode(output_ids, skip_special_tokens=True) |
|
|
preds = [pred.strip() for pred in preds] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return {"caption": preds[0]} |