Spaces:
Paused
Paused
Update utils/planner.py
Browse files- utils/planner.py +30 -23
utils/planner.py
CHANGED
|
@@ -24,7 +24,7 @@ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base
|
|
| 24 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
|
| 25 |
|
| 26 |
# ----------------------------
|
| 27 |
-
# 🧠 Load CLIP Tokenizer (for
|
| 28 |
# ----------------------------
|
| 29 |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
| 30 |
|
|
@@ -36,6 +36,8 @@ def generate_blip_caption(image: Image.Image) -> str:
|
|
| 36 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
| 37 |
out = blip_model.generate(**inputs, max_length=50)
|
| 38 |
caption = processor.decode(out[0], skip_special_tokens=True)
|
|
|
|
|
|
|
| 39 |
print(f"🖼️ BLIP Caption: {caption}")
|
| 40 |
return caption
|
| 41 |
except Exception as e:
|
|
@@ -43,11 +45,11 @@ def generate_blip_caption(image: Image.Image) -> str:
|
|
| 43 |
return "a product image"
|
| 44 |
|
| 45 |
# ----------------------------
|
| 46 |
-
# 🧠 GPT Scene Planning
|
| 47 |
# ----------------------------
|
| 48 |
SCENE_SYSTEM_INSTRUCTIONS = """
|
| 49 |
You are a scene planning assistant for an AI image generation system.
|
| 50 |
-
Your job is to take a caption from a product image and a user prompt, then return a structured JSON with:
|
| 51 |
- scene (environment, setting)
|
| 52 |
- subject (main_actor)
|
| 53 |
- objects (main_product or items)
|
|
@@ -59,7 +61,13 @@ Respond ONLY in raw JSON format. Do NOT include explanations.
|
|
| 59 |
def extract_scene_plan(prompt: str, image: Image.Image) -> dict:
|
| 60 |
try:
|
| 61 |
caption = generate_blip_caption(image)
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
response = client.chat.completions.create(
|
| 65 |
model="gpt-4o-mini-2024-07-18",
|
|
@@ -73,10 +81,15 @@ def extract_scene_plan(prompt: str, image: Image.Image) -> dict:
|
|
| 73 |
content = response.choices[0].message.content
|
| 74 |
print("🧠 Scene Plan (Raw):", content)
|
| 75 |
|
| 76 |
-
#
|
| 77 |
os.makedirs("logs", exist_ok=True)
|
| 78 |
with open("logs/scene_plans.jsonl", "a") as f:
|
| 79 |
-
f.write(json.dumps({
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
return json.loads(content)
|
| 82 |
|
|
@@ -91,48 +104,42 @@ def extract_scene_plan(prompt: str, image: Image.Image) -> dict:
|
|
| 91 |
}
|
| 92 |
|
| 93 |
# ----------------------------
|
| 94 |
-
# ✨
|
| 95 |
# ----------------------------
|
| 96 |
ENRICHED_PROMPT_INSTRUCTIONS = """
|
| 97 |
You are a prompt engineer for an AI image generation model.
|
| 98 |
-
Given a structured scene plan and
|
| 99 |
-
|
| 100 |
1. Describes the subject, product, setting, and layout clearly
|
| 101 |
-
2.
|
| 102 |
-
3.
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
Return only the prompt as a string.
|
| 106 |
"""
|
| 107 |
|
| 108 |
def generate_prompt_variations_from_scene(scene_plan: dict, base_prompt: str, n: int = 3) -> list:
|
| 109 |
prompts = []
|
| 110 |
for _ in range(n):
|
| 111 |
try:
|
| 112 |
-
user_input = f"Scene Plan:\n{json.dumps(scene_plan)}\n\
|
| 113 |
response = client.chat.completions.create(
|
| 114 |
model="gpt-4o-mini-2024-07-18",
|
| 115 |
messages=[
|
| 116 |
{"role": "system", "content": ENRICHED_PROMPT_INSTRUCTIONS},
|
| 117 |
{"role": "user", "content": user_input}
|
| 118 |
],
|
| 119 |
-
temperature=0.
|
| 120 |
max_tokens=100
|
| 121 |
)
|
| 122 |
enriched = response.choices[0].message.content.strip()
|
| 123 |
-
|
| 124 |
-
# Optional: check token count for debug
|
| 125 |
token_count = len(tokenizer(enriched)["input_ids"])
|
| 126 |
print(f"📝 Enriched Prompt ({token_count} tokens): {enriched}")
|
| 127 |
-
|
| 128 |
prompts.append(enriched)
|
| 129 |
except Exception as e:
|
| 130 |
-
print("⚠️ Prompt
|
| 131 |
prompts.append(base_prompt)
|
| 132 |
return prompts
|
| 133 |
|
| 134 |
# ----------------------------
|
| 135 |
-
# ❌
|
| 136 |
# ----------------------------
|
| 137 |
NEGATIVE_SYSTEM_PROMPT = """
|
| 138 |
You are a prompt engineer. Given a structured scene plan, generate a short negative prompt
|
|
@@ -152,9 +159,9 @@ def generate_negative_prompt_from_scene(scene_plan: dict) -> str:
|
|
| 152 |
temperature=0.2,
|
| 153 |
max_tokens=100
|
| 154 |
)
|
| 155 |
-
|
| 156 |
-
return negative
|
| 157 |
except Exception as e:
|
| 158 |
print("❌ Negative Prompt Error:", e)
|
| 159 |
return "blurry, distorted, low quality, deformed, watermark"
|
| 160 |
|
|
|
|
|
|
| 24 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
|
| 25 |
|
| 26 |
# ----------------------------
|
| 27 |
+
# 🧠 Load CLIP Tokenizer (for token check)
|
| 28 |
# ----------------------------
|
| 29 |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
| 30 |
|
|
|
|
| 36 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
| 37 |
out = blip_model.generate(**inputs, max_length=50)
|
| 38 |
caption = processor.decode(out[0], skip_special_tokens=True)
|
| 39 |
+
# Clean duplicate tokens
|
| 40 |
+
caption = " ".join(dict.fromkeys(caption.split()))
|
| 41 |
print(f"🖼️ BLIP Caption: {caption}")
|
| 42 |
return caption
|
| 43 |
except Exception as e:
|
|
|
|
| 45 |
return "a product image"
|
| 46 |
|
| 47 |
# ----------------------------
|
| 48 |
+
# 🧠 GPT Scene Planning with Caption + Visual Style
|
| 49 |
# ----------------------------
|
| 50 |
SCENE_SYSTEM_INSTRUCTIONS = """
|
| 51 |
You are a scene planning assistant for an AI image generation system.
|
| 52 |
+
Your job is to take a caption from a product image, a visual style hint, and a user prompt, then return a structured JSON with:
|
| 53 |
- scene (environment, setting)
|
| 54 |
- subject (main_actor)
|
| 55 |
- objects (main_product or items)
|
|
|
|
| 61 |
def extract_scene_plan(prompt: str, image: Image.Image) -> dict:
|
| 62 |
try:
|
| 63 |
caption = generate_blip_caption(image)
|
| 64 |
+
visual_hint = caption if "shoe" in caption or "product" in caption else "low-top product photo on white background"
|
| 65 |
+
|
| 66 |
+
merged_prompt = (
|
| 67 |
+
f"Image Caption: {caption}\n"
|
| 68 |
+
f"Image Visual Style: {visual_hint}\n"
|
| 69 |
+
f"User Prompt: {prompt}"
|
| 70 |
+
)
|
| 71 |
|
| 72 |
response = client.chat.completions.create(
|
| 73 |
model="gpt-4o-mini-2024-07-18",
|
|
|
|
| 81 |
content = response.choices[0].message.content
|
| 82 |
print("🧠 Scene Plan (Raw):", content)
|
| 83 |
|
| 84 |
+
# Logging
|
| 85 |
os.makedirs("logs", exist_ok=True)
|
| 86 |
with open("logs/scene_plans.jsonl", "a") as f:
|
| 87 |
+
f.write(json.dumps({
|
| 88 |
+
"caption": caption,
|
| 89 |
+
"visual_hint": visual_hint,
|
| 90 |
+
"prompt": prompt,
|
| 91 |
+
"scene_plan": content
|
| 92 |
+
}) + "\n")
|
| 93 |
|
| 94 |
return json.loads(content)
|
| 95 |
|
|
|
|
| 104 |
}
|
| 105 |
|
| 106 |
# ----------------------------
|
| 107 |
+
# ✨ Enriched Prompt Generation (GPT, 77-token safe)
|
| 108 |
# ----------------------------
|
| 109 |
ENRICHED_PROMPT_INSTRUCTIONS = """
|
| 110 |
You are a prompt engineer for an AI image generation model.
|
| 111 |
+
Given a structured scene plan and a user prompt, generate a single natural-language enriched prompt that:
|
|
|
|
| 112 |
1. Describes the subject, product, setting, and layout clearly
|
| 113 |
+
2. Uses natural, photo-realistic language
|
| 114 |
+
3. Stays strictly under 77 tokens (CLIP token limit)
|
| 115 |
+
Return ONLY the enriched prompt string. No explanations.
|
|
|
|
|
|
|
| 116 |
"""
|
| 117 |
|
| 118 |
def generate_prompt_variations_from_scene(scene_plan: dict, base_prompt: str, n: int = 3) -> list:
|
| 119 |
prompts = []
|
| 120 |
for _ in range(n):
|
| 121 |
try:
|
| 122 |
+
user_input = f"Scene Plan:\n{json.dumps(scene_plan)}\n\nUser Prompt:\n{base_prompt}"
|
| 123 |
response = client.chat.completions.create(
|
| 124 |
model="gpt-4o-mini-2024-07-18",
|
| 125 |
messages=[
|
| 126 |
{"role": "system", "content": ENRICHED_PROMPT_INSTRUCTIONS},
|
| 127 |
{"role": "user", "content": user_input}
|
| 128 |
],
|
| 129 |
+
temperature=0.4,
|
| 130 |
max_tokens=100
|
| 131 |
)
|
| 132 |
enriched = response.choices[0].message.content.strip()
|
|
|
|
|
|
|
| 133 |
token_count = len(tokenizer(enriched)["input_ids"])
|
| 134 |
print(f"📝 Enriched Prompt ({token_count} tokens): {enriched}")
|
|
|
|
| 135 |
prompts.append(enriched)
|
| 136 |
except Exception as e:
|
| 137 |
+
print("⚠️ Prompt fallback:", e)
|
| 138 |
prompts.append(base_prompt)
|
| 139 |
return prompts
|
| 140 |
|
| 141 |
# ----------------------------
|
| 142 |
+
# ❌ Negative Prompt Generator
|
| 143 |
# ----------------------------
|
| 144 |
NEGATIVE_SYSTEM_PROMPT = """
|
| 145 |
You are a prompt engineer. Given a structured scene plan, generate a short negative prompt
|
|
|
|
| 159 |
temperature=0.2,
|
| 160 |
max_tokens=100
|
| 161 |
)
|
| 162 |
+
return response.choices[0].message.content.strip()
|
|
|
|
| 163 |
except Exception as e:
|
| 164 |
print("❌ Negative Prompt Error:", e)
|
| 165 |
return "blurry, distorted, low quality, deformed, watermark"
|
| 166 |
|
| 167 |
+
|