Spaces:
Sleeping
Sleeping
glitz-dev
commited on
Commit
·
3b3e0b9
1
Parent(s):
cf1842c
split hipaa files to questions, annotations- given by nataraj
Browse files- hipaathesis.py +465 -81
- pubtator_annotator.py +50 -0
- questions.py +20 -0
- static/thesis.pdf +0 -0
hipaathesis.py
CHANGED
|
@@ -1,7 +1,81 @@
|
|
| 1 |
import PyPDF2
|
| 2 |
import re
|
| 3 |
from collections import Counter
|
|
|
|
| 4 |
import nltk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from nltk.tokenize import sent_tokenize, word_tokenize
|
| 6 |
from nltk.corpus import stopwords
|
| 7 |
from nltk.stem import WordNetLemmatizer
|
|
@@ -9,7 +83,7 @@ import string
|
|
| 9 |
from datetime import datetime, timedelta
|
| 10 |
import json
|
| 11 |
import torch
|
| 12 |
-
from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline, BlipProcessor, BlipForConditionalGeneration
|
| 13 |
import warnings
|
| 14 |
import fitz # PyMuPDF
|
| 15 |
from PIL import Image, ImageEnhance, ImageFilter
|
|
@@ -39,27 +113,57 @@ except ImportError:
|
|
| 39 |
OPENCV_AVAILABLE = False
|
| 40 |
import numpy as np
|
| 41 |
|
|
|
|
|
|
|
|
|
|
| 42 |
warnings.filterwarnings('ignore')
|
| 43 |
|
| 44 |
app = FastAPI(title='AI (PDF→Summary+QnA+Scores)', version='0.2.1')
|
| 45 |
-
app.mount("/
|
| 46 |
|
| 47 |
class HIPAALogger:
|
| 48 |
"""HIPAA-compliant audit logging system"""
|
| 49 |
|
| 50 |
def __init__(self, log_file="hipaa_audit.log"):
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
self.setup_logging()
|
| 53 |
|
| 54 |
def setup_logging(self):
|
| 55 |
-
"""Setup secure audit logging"""
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
def log_access(self, user_id, action, resource, success=True):
|
| 65 |
"""Log access attempts and actions"""
|
|
@@ -111,13 +215,43 @@ class SecureFileHandler:
|
|
| 111 |
|
| 112 |
def secure_save(self, data, filepath):
|
| 113 |
"""Save data with encryption"""
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
def secure_load(self, filepath):
|
| 123 |
"""Load encrypted data"""
|
|
@@ -156,11 +290,26 @@ class SecureFileHandler:
|
|
| 156 |
class HIPAACompliantThesisAnalyzer:
|
| 157 |
"""HIPAA-compliant version of the thesis analyzer"""
|
| 158 |
|
| 159 |
-
def __init__(self, user_id=None, password=None, session_timeout=30):
|
| 160 |
self.user_id = user_id or getpass.getuser()
|
| 161 |
self.session_timeout = session_timeout # minutes
|
| 162 |
self.session_start = datetime.now()
|
| 163 |
self.last_activity = datetime.now()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
# Initialize HIPAA compliance components
|
| 166 |
self.hipaa_logger = HIPAALogger()
|
|
@@ -184,8 +333,19 @@ class HIPAACompliantThesisAnalyzer:
|
|
| 184 |
except LookupError as e:
|
| 185 |
print(f"NLTK resource error: {e}")
|
| 186 |
self._download_nltk_resources()
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
self.thesis_text = ""
|
| 191 |
self.sentences = []
|
|
@@ -196,36 +356,66 @@ class HIPAACompliantThesisAnalyzer:
|
|
| 196 |
self.use_ocr = True
|
| 197 |
self.use_blip = True
|
| 198 |
|
| 199 |
-
# Initialize
|
| 200 |
-
print("Loading
|
| 201 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 202 |
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
# Initialize pipelines
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
|
|
|
| 219 |
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
# Initialize BLIP if enabled
|
| 231 |
if self.use_blip:
|
|
@@ -248,7 +438,12 @@ class HIPAACompliantThesisAnalyzer:
|
|
| 248 |
self.use_ocr = False
|
| 249 |
|
| 250 |
def _download_nltk_resources(self):
|
| 251 |
-
"""Download required NLTK resources"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
resources = [
|
| 253 |
('tokenizers/punkt', 'punkt'),
|
| 254 |
('tokenizers/punkt_tab', 'punkt_tab'),
|
|
@@ -262,7 +457,8 @@ class HIPAACompliantThesisAnalyzer:
|
|
| 262 |
nltk.data.find(resource_path)
|
| 263 |
except LookupError:
|
| 264 |
try:
|
| 265 |
-
nltk.download(resource_name, quiet=True)
|
|
|
|
| 266 |
except Exception as e:
|
| 267 |
print(f"Warning: Failed to download {resource_name}: {e}")
|
| 268 |
|
|
@@ -281,8 +477,8 @@ class HIPAACompliantThesisAnalyzer:
|
|
| 281 |
"""Calculate secure hash of document content"""
|
| 282 |
return hashlib.sha256(content.encode()).hexdigest()
|
| 283 |
|
| 284 |
-
def
|
| 285 |
-
"""
|
| 286 |
self.check_session_timeout()
|
| 287 |
|
| 288 |
# Calculate document hash for audit trail
|
|
@@ -313,6 +509,17 @@ class HIPAACompliantThesisAnalyzer:
|
|
| 313 |
ocr_text = " ".join([result['ocr_text'] for result in ocr_results if result.get('ocr_text')])
|
| 314 |
combined_text = text + " " + ocr_text
|
| 315 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
# Generate analysis
|
| 317 |
sections = self._extract_key_sections(combined_text)
|
| 318 |
key_terms = self._extract_key_terms(combined_text)
|
|
@@ -337,7 +544,7 @@ class HIPAACompliantThesisAnalyzer:
|
|
| 337 |
"document_info": {
|
| 338 |
"file_path": os.path.basename(pdf_path), # Only filename for privacy
|
| 339 |
"analysis_timestamp": datetime.now().isoformat(),
|
| 340 |
-
"total_characters": len(
|
| 341 |
"total_images": len(images),
|
| 342 |
"device_used": str(self.device)
|
| 343 |
},
|
|
@@ -354,8 +561,8 @@ class HIPAACompliantThesisAnalyzer:
|
|
| 354 |
},
|
| 355 |
"question_responses": question_answers,
|
| 356 |
"statistics": {
|
| 357 |
-
"total_text_characters": len(
|
| 358 |
-
"ocr_text_characters": len(ocr_text),
|
| 359 |
"questions_processed": len(questions),
|
| 360 |
"sections_identified": len(sections),
|
| 361 |
"key_terms_extracted": len(key_terms)
|
|
@@ -372,6 +579,102 @@ class HIPAACompliantThesisAnalyzer:
|
|
| 372 |
except Exception as e:
|
| 373 |
self.hipaa_logger.log_access(self.user_id, "PROCESSING_ERROR", pdf_path, success=False)
|
| 374 |
raise e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
|
| 376 |
def _extract_text_and_images(self, pdf_path):
|
| 377 |
"""Securely extract text and images from PDF"""
|
|
@@ -534,13 +837,25 @@ class HIPAACompliantThesisAnalyzer:
|
|
| 534 |
"""Extract key terms securely"""
|
| 535 |
try:
|
| 536 |
words = re.findall(r'\b[a-zA-Z]+\b', text.lower())
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 544 |
|
| 545 |
word_freq = Counter(words)
|
| 546 |
return [term for term, freq in word_freq.most_common(20)]
|
|
@@ -552,6 +867,12 @@ class HIPAACompliantThesisAnalyzer:
|
|
| 552 |
def _generate_summary_secure(self, text):
|
| 553 |
"""Generate summary using local T5 model"""
|
| 554 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 555 |
clean_text = re.sub(r'\s+', ' ', text).strip()
|
| 556 |
|
| 557 |
# Chunk text for processing
|
|
@@ -581,6 +902,14 @@ class HIPAACompliantThesisAnalyzer:
|
|
| 581 |
|
| 582 |
for question in questions:
|
| 583 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 584 |
prompt = f"question: {question} context: {text[:1000]}"
|
| 585 |
|
| 586 |
answer_result = self.qa_pipeline(
|
|
@@ -635,6 +964,77 @@ class AnalyzeReq(BaseModel):
|
|
| 635 |
userId:str
|
| 636 |
password:str
|
| 637 |
useEncryption: bool =False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 638 |
|
| 639 |
@app.post('/analyze')
|
| 640 |
def analyze(req: AnalyzeReq):
|
|
@@ -647,30 +1047,14 @@ def analyze(req: AnalyzeReq):
|
|
| 647 |
analyzer = HIPAACompliantThesisAnalyzer(
|
| 648 |
user_id=req.userId,
|
| 649 |
password=req.password,
|
| 650 |
-
session_timeout=30
|
|
|
|
| 651 |
)
|
| 652 |
|
| 653 |
pdf_path = req.storageKey
|
| 654 |
|
| 655 |
-
#
|
| 656 |
-
questions =
|
| 657 |
-
"What is the main objective of the research?",
|
| 658 |
-
"What methodology was used in the study?",
|
| 659 |
-
"What are the key findings or results?",
|
| 660 |
-
"What conclusions did the authors draw?",
|
| 661 |
-
"What are the limitations of the study?",
|
| 662 |
-
"What motivated the researchers to conduct this study?",
|
| 663 |
-
"How does this research relate to existing literature?",
|
| 664 |
-
"What are the practical implications of the findings?",
|
| 665 |
-
"What assumptions underlie the research?",
|
| 666 |
-
"What statistical methods were used to analyze the data?",
|
| 667 |
-
"How robust are the study’s findings?",
|
| 668 |
-
"Are there any potential biases in the study design or data collection?",
|
| 669 |
-
"How do the results compare with previous studies on the same topic?",
|
| 670 |
-
"What are the potential future applications of this research?",
|
| 671 |
-
"How could this research be expanded or built upon in future studies?",
|
| 672 |
-
"What new questions have emerged as a result of this study?"
|
| 673 |
-
]
|
| 674 |
|
| 675 |
# Process document securely
|
| 676 |
print("\nProcessing document with HIPAA compliance...")
|
|
@@ -731,4 +1115,4 @@ COMPLIANCE NOTES:
|
|
| 731 |
|
| 732 |
""")
|
| 733 |
|
| 734 |
-
#main()
|
|
|
|
| 1 |
import PyPDF2
|
| 2 |
import re
|
| 3 |
from collections import Counter
|
| 4 |
+
import os
|
| 5 |
import nltk
|
| 6 |
+
|
| 7 |
+
def setup_cache_directories():
|
| 8 |
+
"""Setup cache directories for transformers and torch with proper permissions"""
|
| 9 |
+
try:
|
| 10 |
+
# Create cache directories in /app with proper permissions
|
| 11 |
+
cache_dirs = [
|
| 12 |
+
'/app/.cache/huggingface',
|
| 13 |
+
'/app/.cache/torch',
|
| 14 |
+
'/root/.cache/huggingface',
|
| 15 |
+
'/root/.cache/torch'
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
+
for cache_dir in cache_dirs:
|
| 19 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 20 |
+
# Set permissions to be writable
|
| 21 |
+
os.chmod(cache_dir, 0o777)
|
| 22 |
+
|
| 23 |
+
# Set environment variables for cache directories
|
| 24 |
+
os.environ['HF_HOME'] = '/app/.cache/huggingface'
|
| 25 |
+
os.environ['TRANSFORMERS_CACHE'] = '/app/.cache/huggingface'
|
| 26 |
+
os.environ['TORCH_HOME'] = '/app/.cache/torch'
|
| 27 |
+
|
| 28 |
+
print(f"Cache directories setup complete: {cache_dirs}")
|
| 29 |
+
|
| 30 |
+
except Exception as e:
|
| 31 |
+
print(f"Warning: Cache directory setup failed: {e}")
|
| 32 |
+
|
| 33 |
+
# Set NLTK data path BEFORE any other NLTK imports
|
| 34 |
+
def setup_nltk_data():
|
| 35 |
+
"""Setup NLTK data directory in container-writable location"""
|
| 36 |
+
try:
|
| 37 |
+
# Use the app directory for NLTK data in container
|
| 38 |
+
nltk_data_dir = '/app/nltk_data'
|
| 39 |
+
|
| 40 |
+
# Ensure directory exists and is writable
|
| 41 |
+
os.makedirs(nltk_data_dir, exist_ok=True)
|
| 42 |
+
|
| 43 |
+
# Set NLTK data path - this must be done first
|
| 44 |
+
nltk.data.path.clear()
|
| 45 |
+
nltk.data.path.append(nltk_data_dir)
|
| 46 |
+
|
| 47 |
+
# Also set the NLTK_DATA environment variable
|
| 48 |
+
os.environ['NLTK_DATA'] = nltk_data_dir
|
| 49 |
+
|
| 50 |
+
# Setup cache directories for transformers and torch
|
| 51 |
+
setup_cache_directories()
|
| 52 |
+
|
| 53 |
+
# Download required resources if not present
|
| 54 |
+
required_resources = [
|
| 55 |
+
'punkt',
|
| 56 |
+
'punkt_tab',
|
| 57 |
+
'stopwords',
|
| 58 |
+
'wordnet',
|
| 59 |
+
'omw-1.4'
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
for resource in required_resources:
|
| 63 |
+
try:
|
| 64 |
+
nltk.data.find(f'tokenizers/{resource}' if 'punkt' in resource else f'corpora/{resource}')
|
| 65 |
+
except LookupError:
|
| 66 |
+
try:
|
| 67 |
+
nltk.download(resource, download_dir=nltk_data_dir, quiet=True)
|
| 68 |
+
print(f"Downloaded NLTK resource: {resource}")
|
| 69 |
+
except Exception as e:
|
| 70 |
+
print(f"Warning: Could not download {resource}: {e}")
|
| 71 |
+
|
| 72 |
+
except Exception as e:
|
| 73 |
+
print(f"Warning: NLTK setup failed: {e}")
|
| 74 |
+
|
| 75 |
+
# Call setup immediately after basic imports
|
| 76 |
+
setup_nltk_data()
|
| 77 |
+
|
| 78 |
+
# Now import NLTK modules after setup
|
| 79 |
from nltk.tokenize import sent_tokenize, word_tokenize
|
| 80 |
from nltk.corpus import stopwords
|
| 81 |
from nltk.stem import WordNetLemmatizer
|
|
|
|
| 83 |
from datetime import datetime, timedelta
|
| 84 |
import json
|
| 85 |
import torch
|
| 86 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline, BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM
|
| 87 |
import warnings
|
| 88 |
import fitz # PyMuPDF
|
| 89 |
from PIL import Image, ImageEnhance, ImageFilter
|
|
|
|
| 113 |
OPENCV_AVAILABLE = False
|
| 114 |
import numpy as np
|
| 115 |
|
| 116 |
+
from questions import THESIS_QUESTIONS
|
| 117 |
+
from pubtator_annotator import PubTatorAnnotator
|
| 118 |
+
|
| 119 |
warnings.filterwarnings('ignore')
|
| 120 |
|
| 121 |
app = FastAPI(title='AI (PDF→Summary+QnA+Scores)', version='0.2.1')
|
| 122 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 123 |
|
| 124 |
class HIPAALogger:
|
| 125 |
"""HIPAA-compliant audit logging system"""
|
| 126 |
|
| 127 |
def __init__(self, log_file="hipaa_audit.log"):
|
| 128 |
+
# Create logs directory if it doesn't exist
|
| 129 |
+
log_dir = '/app/logs'
|
| 130 |
+
os.makedirs(log_dir, exist_ok=True)
|
| 131 |
+
|
| 132 |
+
# Use the new log file path
|
| 133 |
+
self.log_file = os.path.join(log_dir, log_file)
|
| 134 |
+
self.logger = None
|
| 135 |
self.setup_logging()
|
| 136 |
|
| 137 |
def setup_logging(self):
|
| 138 |
+
"""Setup secure audit logging with fallback to console"""
|
| 139 |
+
try:
|
| 140 |
+
# Try to create file handler
|
| 141 |
+
logging.basicConfig(
|
| 142 |
+
filename=self.log_file,
|
| 143 |
+
level=logging.INFO,
|
| 144 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 145 |
+
datefmt='%Y-%m-%d %H:%M:%S'
|
| 146 |
+
)
|
| 147 |
+
self.logger = logging.getLogger('HIPAA_AUDIT')
|
| 148 |
+
print(f"HIPAA logging initialized: {self.log_file}")
|
| 149 |
+
except PermissionError:
|
| 150 |
+
# Fallback to console logging if file writing fails
|
| 151 |
+
logging.basicConfig(
|
| 152 |
+
level=logging.INFO,
|
| 153 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 154 |
+
datefmt='%Y-%m-%d %H:%M:%S'
|
| 155 |
+
)
|
| 156 |
+
self.logger = logging.getLogger('HIPAA_AUDIT')
|
| 157 |
+
print(f"Warning: Cannot write to {self.log_file}, using console logging")
|
| 158 |
+
except Exception as e:
|
| 159 |
+
# Fallback to console logging for any other error
|
| 160 |
+
logging.basicConfig(
|
| 161 |
+
level=logging.INFO,
|
| 162 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 163 |
+
datefmt='%Y-%m-%d %H:%M:%S'
|
| 164 |
+
)
|
| 165 |
+
self.logger = logging.getLogger('HIPAA_AUDIT')
|
| 166 |
+
print(f"Warning: Logging setup failed ({e}), using console logging")
|
| 167 |
|
| 168 |
def log_access(self, user_id, action, resource, success=True):
|
| 169 |
"""Log access attempts and actions"""
|
|
|
|
| 215 |
|
| 216 |
def secure_save(self, data, filepath):
|
| 217 |
"""Save data with encryption"""
|
| 218 |
+
try:
|
| 219 |
+
if self.fernet:
|
| 220 |
+
encrypted_data = self.encrypt_data(json.dumps(data))
|
| 221 |
+
with open(filepath + '.enc', 'wb') as f:
|
| 222 |
+
f.write(encrypted_data)
|
| 223 |
+
else:
|
| 224 |
+
with open(filepath, 'w', encoding='utf-8') as f:
|
| 225 |
+
json.dump(data, f, indent=2)
|
| 226 |
+
except PermissionError:
|
| 227 |
+
print(f"Warning: Cannot write to {filepath}, saving to /tmp instead")
|
| 228 |
+
# Fallback to /tmp directory
|
| 229 |
+
import tempfile
|
| 230 |
+
temp_path = os.path.join(tempfile.gettempdir(), os.path.basename(filepath))
|
| 231 |
+
if self.fernet:
|
| 232 |
+
encrypted_data = self.encrypt_data(json.dumps(data))
|
| 233 |
+
with open(temp_path + '.enc', 'wb') as f:
|
| 234 |
+
f.write(encrypted_data)
|
| 235 |
+
else:
|
| 236 |
+
with open(temp_path, 'w', encoding='utf-8') as f:
|
| 237 |
+
json.dump(data, f, indent=2)
|
| 238 |
+
print(f"Data saved to: {temp_path}")
|
| 239 |
+
except Exception as e:
|
| 240 |
+
print(f"Error saving data: {e}")
|
| 241 |
+
# Still try to save to /tmp as last resort
|
| 242 |
+
try:
|
| 243 |
+
import tempfile
|
| 244 |
+
temp_path = os.path.join(tempfile.gettempdir(), os.path.basename(filepath))
|
| 245 |
+
if self.fernet:
|
| 246 |
+
encrypted_data = self.encrypt_data(json.dumps(data))
|
| 247 |
+
with open(temp_path + '.enc', 'wb') as f:
|
| 248 |
+
f.write(encrypted_data)
|
| 249 |
+
else:
|
| 250 |
+
with open(temp_path, 'w', encoding='utf-8') as f:
|
| 251 |
+
json.dump(data, f, indent=2)
|
| 252 |
+
print(f"Data saved to fallback location: {temp_path}")
|
| 253 |
+
except Exception as fallback_error:
|
| 254 |
+
print(f"Failed to save data even to fallback location: {fallback_error}")
|
| 255 |
|
| 256 |
def secure_load(self, filepath):
|
| 257 |
"""Load encrypted data"""
|
|
|
|
| 290 |
class HIPAACompliantThesisAnalyzer:
|
| 291 |
"""HIPAA-compliant version of the thesis analyzer"""
|
| 292 |
|
| 293 |
+
def __init__(self, user_id=None, password=None, session_timeout=30, model_name="t5-small"):
|
| 294 |
self.user_id = user_id or getpass.getuser()
|
| 295 |
self.session_timeout = session_timeout # minutes
|
| 296 |
self.session_start = datetime.now()
|
| 297 |
self.last_activity = datetime.now()
|
| 298 |
+
self.model_name = model_name
|
| 299 |
+
|
| 300 |
+
# Map model names to their optimal tasks and parameters
|
| 301 |
+
self.model_configs = {
|
| 302 |
+
"t5-small": {"task": "text2text-generation", "summarizer_task": "summarization"},
|
| 303 |
+
"t5-base": {"task": "text2text-generation", "summarizer_task": "summarization"},
|
| 304 |
+
"t5-large": {"task": "text2text-generation", "summarizer_task": "summarization"},
|
| 305 |
+
"bart-large-cnn": {"task": "text2text-generation", "summarizer_task": "summarization"},
|
| 306 |
+
"facebook/bart-base": {"task": "text2text-generation", "summarizer_task": "summarization"},
|
| 307 |
+
"distilbart-cnn-12-6": {"task": "text2text-generation", "summarizer_task": "summarization"},
|
| 308 |
+
"sshleifer/distilbart-cnn-6-6": {"task": "text2text-generation", "summarizer_task": "summarization"},
|
| 309 |
+
"pegasus-large": {"task": "text2text-generation", "summarizer_task": "summarization"},
|
| 310 |
+
"flan-t5-base": {"task": "text2text-generation", "summarizer_task": "summarization"},
|
| 311 |
+
"flan-t5-large": {"task": "text2text-generation", "summarizer_task": "summarization"}
|
| 312 |
+
}
|
| 313 |
|
| 314 |
# Initialize HIPAA compliance components
|
| 315 |
self.hipaa_logger = HIPAALogger()
|
|
|
|
| 333 |
except LookupError as e:
|
| 334 |
print(f"NLTK resource error: {e}")
|
| 335 |
self._download_nltk_resources()
|
| 336 |
+
try:
|
| 337 |
+
self.lemmatizer = WordNetLemmatizer()
|
| 338 |
+
self.stop_words = set(stopwords.words('english'))
|
| 339 |
+
except Exception as e2:
|
| 340 |
+
print(f"Failed to initialize NLTK after download: {e2}")
|
| 341 |
+
# Fallback to basic functionality
|
| 342 |
+
self.lemmatizer = None
|
| 343 |
+
self.stop_words = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'])
|
| 344 |
+
except Exception as e:
|
| 345 |
+
print(f"Error initializing NLTK: {e}")
|
| 346 |
+
# Fallback to basic functionality
|
| 347 |
+
self.lemmatizer = None
|
| 348 |
+
self.stop_words = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'])
|
| 349 |
|
| 350 |
self.thesis_text = ""
|
| 351 |
self.sentences = []
|
|
|
|
| 356 |
self.use_ocr = True
|
| 357 |
self.use_blip = True
|
| 358 |
|
| 359 |
+
# Initialize Model
|
| 360 |
+
print(f"Loading {self.model_name} model (HIPAA-compliant local processing)...")
|
| 361 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 362 |
|
| 363 |
+
try:
|
| 364 |
+
# Try to load with explicit cache directory
|
| 365 |
+
cache_dir = '/app/.cache/huggingface'
|
| 366 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, cache_dir=cache_dir)
|
| 367 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name, cache_dir=cache_dir)
|
| 368 |
+
self.model.to(self.device)
|
| 369 |
+
print(f"{self.model_name} loaded successfully from cache")
|
| 370 |
+
except Exception as e:
|
| 371 |
+
print(f"Error loading {self.model_name}: {e}")
|
| 372 |
+
print("Attempting to load with fallback cache directory...")
|
| 373 |
+
try:
|
| 374 |
+
# Fallback to default cache
|
| 375 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 376 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
|
| 377 |
+
self.model.to(self.device)
|
| 378 |
+
print(f"{self.model_name} loaded with fallback cache")
|
| 379 |
+
except Exception as e2:
|
| 380 |
+
print(f"Failed to load {self.model_name}: {e2}")
|
| 381 |
+
# Fallback to t5-small if requested model fails
|
| 382 |
+
if self.model_name != "t5-small":
|
| 383 |
+
print("Falling back to t5-small...")
|
| 384 |
+
self.model_name = "t5-small"
|
| 385 |
+
self.tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
| 386 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained("t5-small")
|
| 387 |
+
self.model.to(self.device)
|
| 388 |
+
else:
|
| 389 |
+
raise e2
|
| 390 |
|
| 391 |
# Initialize pipelines
|
| 392 |
+
try:
|
| 393 |
+
self.summarizer = pipeline(
|
| 394 |
+
"summarization",
|
| 395 |
+
model=self.model,
|
| 396 |
+
tokenizer=self.tokenizer,
|
| 397 |
+
device=0 if torch.cuda.is_available() else -1,
|
| 398 |
+
max_length=200,
|
| 399 |
+
min_length=50,
|
| 400 |
+
do_sample=True,
|
| 401 |
+
temperature=0.7
|
| 402 |
+
)
|
| 403 |
|
| 404 |
+
self.qa_pipeline = pipeline(
|
| 405 |
+
"text2text-generation",
|
| 406 |
+
model=self.model,
|
| 407 |
+
tokenizer=self.tokenizer,
|
| 408 |
+
device=0 if torch.cuda.is_available() else -1,
|
| 409 |
+
max_length=512,
|
| 410 |
+
do_sample=True,
|
| 411 |
+
temperature=0.7
|
| 412 |
+
)
|
| 413 |
+
print("Pipelines initialized successfully")
|
| 414 |
+
except Exception as e:
|
| 415 |
+
print(f"Error initializing pipelines: {e}")
|
| 416 |
+
# Create fallback pipelines
|
| 417 |
+
self.summarizer = None
|
| 418 |
+
self.qa_pipeline = None
|
| 419 |
|
| 420 |
# Initialize BLIP if enabled
|
| 421 |
if self.use_blip:
|
|
|
|
| 438 |
self.use_ocr = False
|
| 439 |
|
| 440 |
def _download_nltk_resources(self):
|
| 441 |
+
"""Download required NLTK resources to user directory"""
|
| 442 |
+
# Use the same user-writable directory
|
| 443 |
+
nltk_data_dir = os.path.join(os.path.expanduser('~'), 'nltk_data')
|
| 444 |
+
os.makedirs(nltk_data_dir, exist_ok=True)
|
| 445 |
+
nltk.data.path.append(nltk_data_dir)
|
| 446 |
+
|
| 447 |
resources = [
|
| 448 |
('tokenizers/punkt', 'punkt'),
|
| 449 |
('tokenizers/punkt_tab', 'punkt_tab'),
|
|
|
|
| 457 |
nltk.data.find(resource_path)
|
| 458 |
except LookupError:
|
| 459 |
try:
|
| 460 |
+
nltk.download(resource_name, download_dir=nltk_data_dir, quiet=True)
|
| 461 |
+
print(f"Downloaded NLTK resource: {resource_name}")
|
| 462 |
except Exception as e:
|
| 463 |
print(f"Warning: Failed to download {resource_name}: {e}")
|
| 464 |
|
|
|
|
| 477 |
"""Calculate secure hash of document content"""
|
| 478 |
return hashlib.sha256(content.encode()).hexdigest()
|
| 479 |
|
| 480 |
+
def _prepare_document(self, pdf_path):
|
| 481 |
+
"""Common method to prepare document for processing (extract text/images/OCR)"""
|
| 482 |
self.check_session_timeout()
|
| 483 |
|
| 484 |
# Calculate document hash for audit trail
|
|
|
|
| 509 |
ocr_text = " ".join([result['ocr_text'] for result in ocr_results if result.get('ocr_text')])
|
| 510 |
combined_text = text + " " + ocr_text
|
| 511 |
|
| 512 |
+
return combined_text, images, ocr_results, doc_hash
|
| 513 |
+
|
| 514 |
+
except Exception as e:
|
| 515 |
+
self.hipaa_logger.log_access(self.user_id, "PREPARATION_ERROR", pdf_path, success=False)
|
| 516 |
+
raise e
|
| 517 |
+
|
| 518 |
+
def process_document_securely(self, pdf_path, questions, output_file=None):
|
| 519 |
+
"""Process document with full HIPAA compliance"""
|
| 520 |
+
combined_text, images, ocr_results, doc_hash = self._prepare_document(pdf_path)
|
| 521 |
+
|
| 522 |
+
try:
|
| 523 |
# Generate analysis
|
| 524 |
sections = self._extract_key_sections(combined_text)
|
| 525 |
key_terms = self._extract_key_terms(combined_text)
|
|
|
|
| 544 |
"document_info": {
|
| 545 |
"file_path": os.path.basename(pdf_path), # Only filename for privacy
|
| 546 |
"analysis_timestamp": datetime.now().isoformat(),
|
| 547 |
+
"total_characters": len(combined_text),
|
| 548 |
"total_images": len(images),
|
| 549 |
"device_used": str(self.device)
|
| 550 |
},
|
|
|
|
| 561 |
},
|
| 562 |
"question_responses": question_answers,
|
| 563 |
"statistics": {
|
| 564 |
+
"total_text_characters": len(combined_text),
|
| 565 |
+
"ocr_text_characters": len([r['ocr_text'] for r in ocr_results if r.get('ocr_text')]), # Approximate
|
| 566 |
"questions_processed": len(questions),
|
| 567 |
"sections_identified": len(sections),
|
| 568 |
"key_terms_extracted": len(key_terms)
|
|
|
|
| 579 |
except Exception as e:
|
| 580 |
self.hipaa_logger.log_access(self.user_id, "PROCESSING_ERROR", pdf_path, success=False)
|
| 581 |
raise e
|
| 582 |
+
|
| 583 |
+
def process_summary_only(self, pdf_path, output_file=None):
|
| 584 |
+
"""Process document for summary only"""
|
| 585 |
+
combined_text, images, ocr_results, doc_hash = self._prepare_document(pdf_path)
|
| 586 |
+
|
| 587 |
+
try:
|
| 588 |
+
# Generate summary
|
| 589 |
+
summary = self._generate_summary_secure(combined_text)
|
| 590 |
+
key_terms = self._extract_key_terms(combined_text)
|
| 591 |
+
sections = self._extract_key_sections(combined_text)
|
| 592 |
+
|
| 593 |
+
self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "SUMMARY_COMPLETE")
|
| 594 |
+
|
| 595 |
+
report = {
|
| 596 |
+
"hipaa_compliance": {
|
| 597 |
+
"processed_locally": True,
|
| 598 |
+
"user_id": self.user_id,
|
| 599 |
+
"document_hash": doc_hash,
|
| 600 |
+
"processing_timestamp": datetime.now().isoformat()
|
| 601 |
+
},
|
| 602 |
+
"text_analysis": {
|
| 603 |
+
"summary": summary,
|
| 604 |
+
"key_terms": key_terms[:15],
|
| 605 |
+
"sections_found": list(sections.keys())
|
| 606 |
+
}
|
| 607 |
+
}
|
| 608 |
+
|
| 609 |
+
if output_file:
|
| 610 |
+
self.secure_handler.secure_save(report, output_file)
|
| 611 |
+
|
| 612 |
+
return report
|
| 613 |
+
except Exception as e:
|
| 614 |
+
self.hipaa_logger.log_access(self.user_id, "SUMMARY_ERROR", pdf_path, success=False)
|
| 615 |
+
raise e
|
| 616 |
+
|
| 617 |
+
def process_questions_only(self, pdf_path, questions, output_file=None):
|
| 618 |
+
"""Process document for Q&A only"""
|
| 619 |
+
combined_text, images, ocr_results, doc_hash = self._prepare_document(pdf_path)
|
| 620 |
+
|
| 621 |
+
try:
|
| 622 |
+
# Generate answers
|
| 623 |
+
question_answers = self._answer_questions_secure(questions, combined_text)
|
| 624 |
+
|
| 625 |
+
self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "QA_COMPLETE")
|
| 626 |
+
|
| 627 |
+
report = {
|
| 628 |
+
"hipaa_compliance": {
|
| 629 |
+
"processed_locally": True,
|
| 630 |
+
"user_id": self.user_id,
|
| 631 |
+
"document_hash": doc_hash,
|
| 632 |
+
"processing_timestamp": datetime.now().isoformat()
|
| 633 |
+
},
|
| 634 |
+
"question_responses": question_answers
|
| 635 |
+
}
|
| 636 |
+
|
| 637 |
+
if output_file:
|
| 638 |
+
self.secure_handler.secure_save(report, output_file)
|
| 639 |
+
|
| 640 |
+
return report
|
| 641 |
+
except Exception as e:
|
| 642 |
+
self.hipaa_logger.log_access(self.user_id, "QA_ERROR", pdf_path, success=False)
|
| 643 |
+
raise e
|
| 644 |
+
|
| 645 |
+
def process_annotations_only(self, pdf_path, output_file=None):
|
| 646 |
+
"""Process document for PubTator annotations only"""
|
| 647 |
+
combined_text, images, ocr_results, doc_hash = self._prepare_document(pdf_path)
|
| 648 |
+
|
| 649 |
+
try:
|
| 650 |
+
# Initialize PubTator Annotator
|
| 651 |
+
# Note: PubTator legacy API might have issues, but we integrate as requested
|
| 652 |
+
# Using 'Gene' as a valid concept example, though API might still error
|
| 653 |
+
annotator = PubTatorAnnotator(bioconcept="Gene", output_format="JSON")
|
| 654 |
+
|
| 655 |
+
print("Submitting text to PubTator for annotation...")
|
| 656 |
+
annotations = annotator.annotate_text(combined_text)
|
| 657 |
+
|
| 658 |
+
self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "ANNOTATION_COMPLETE")
|
| 659 |
+
|
| 660 |
+
report = {
|
| 661 |
+
"hipaa_compliance": {
|
| 662 |
+
"processed_locally": False, # PubTator is external
|
| 663 |
+
"user_id": self.user_id,
|
| 664 |
+
"document_hash": doc_hash,
|
| 665 |
+
"processing_timestamp": datetime.now().isoformat(),
|
| 666 |
+
"external_api_used": "PubTator Legacy"
|
| 667 |
+
},
|
| 668 |
+
"annotations": annotations if annotations is not None else "Failed to retrieve annotations"
|
| 669 |
+
}
|
| 670 |
+
|
| 671 |
+
if output_file:
|
| 672 |
+
self.secure_handler.secure_save(report, output_file)
|
| 673 |
+
|
| 674 |
+
return report
|
| 675 |
+
except Exception as e:
|
| 676 |
+
self.hipaa_logger.log_access(self.user_id, "ANNOTATION_ERROR", pdf_path, success=False)
|
| 677 |
+
raise e
|
| 678 |
|
| 679 |
def _extract_text_and_images(self, pdf_path):
|
| 680 |
"""Securely extract text and images from PDF"""
|
|
|
|
| 837 |
"""Extract key terms securely"""
|
| 838 |
try:
|
| 839 |
words = re.findall(r'\b[a-zA-Z]+\b', text.lower())
|
| 840 |
+
|
| 841 |
+
# Handle case where lemmatizer might be None
|
| 842 |
+
if self.lemmatizer is not None:
|
| 843 |
+
words = [
|
| 844 |
+
self.lemmatizer.lemmatize(word)
|
| 845 |
+
for word in words
|
| 846 |
+
if word not in self.stop_words
|
| 847 |
+
and len(word) > 3
|
| 848 |
+
and word.isalpha()
|
| 849 |
+
]
|
| 850 |
+
else:
|
| 851 |
+
# Fallback without lemmatization
|
| 852 |
+
words = [
|
| 853 |
+
word
|
| 854 |
+
for word in words
|
| 855 |
+
if word not in self.stop_words
|
| 856 |
+
and len(word) > 3
|
| 857 |
+
and word.isalpha()
|
| 858 |
+
]
|
| 859 |
|
| 860 |
word_freq = Counter(words)
|
| 861 |
return [term for term, freq in word_freq.most_common(20)]
|
|
|
|
| 867 |
def _generate_summary_secure(self, text):
|
| 868 |
"""Generate summary using local T5 model"""
|
| 869 |
try:
|
| 870 |
+
if self.summarizer is None:
|
| 871 |
+
print("Summarizer not available, using fallback method")
|
| 872 |
+
# Fallback to extractive summary
|
| 873 |
+
sentences = re.split(r'[.!?]+', text)
|
| 874 |
+
return " ".join(sentences[:3]) + "..."
|
| 875 |
+
|
| 876 |
clean_text = re.sub(r'\s+', ' ', text).strip()
|
| 877 |
|
| 878 |
# Chunk text for processing
|
|
|
|
| 902 |
|
| 903 |
for question in questions:
|
| 904 |
try:
|
| 905 |
+
if self.qa_pipeline is None:
|
| 906 |
+
answers[question] = {
|
| 907 |
+
'answer': 'Q&A pipeline not available - using fallback',
|
| 908 |
+
'method': 'Fallback',
|
| 909 |
+
'processed_securely': True
|
| 910 |
+
}
|
| 911 |
+
continue
|
| 912 |
+
|
| 913 |
prompt = f"question: {question} context: {text[:1000]}"
|
| 914 |
|
| 915 |
answer_result = self.qa_pipeline(
|
|
|
|
| 964 |
userId:str
|
| 965 |
password:str
|
| 966 |
useEncryption: bool =False
|
| 967 |
+
model_name: Optional[str] = "t5-small"
|
| 968 |
+
|
| 969 |
+
@app.post('/get_summary')
|
| 970 |
+
def get_summary(req: AnalyzeReq):
|
| 971 |
+
"""Get summary only"""
|
| 972 |
+
try:
|
| 973 |
+
analyzer = HIPAACompliantThesisAnalyzer(
|
| 974 |
+
user_id=req.userId,
|
| 975 |
+
password=req.password,
|
| 976 |
+
session_timeout=30,
|
| 977 |
+
model_name=req.model_name
|
| 978 |
+
)
|
| 979 |
+
|
| 980 |
+
report = analyzer.process_summary_only(
|
| 981 |
+
pdf_path=req.storageKey,
|
| 982 |
+
output_file="hipaa_summary_only"
|
| 983 |
+
)
|
| 984 |
+
|
| 985 |
+
analyzer.cleanup_session()
|
| 986 |
+
return report
|
| 987 |
+
except Exception as e:
|
| 988 |
+
print(f"Error in get_summary: {e}")
|
| 989 |
+
return {"error": str(e)}
|
| 990 |
+
|
| 991 |
+
@app.post('/get_answer')
|
| 992 |
+
def get_answer(req: AnalyzeReq):
|
| 993 |
+
"""Get answers only"""
|
| 994 |
+
try:
|
| 995 |
+
analyzer = HIPAACompliantThesisAnalyzer(
|
| 996 |
+
user_id=req.userId,
|
| 997 |
+
password=req.password,
|
| 998 |
+
session_timeout=30,
|
| 999 |
+
model_name=req.model_name
|
| 1000 |
+
)
|
| 1001 |
+
|
| 1002 |
+
# Use questions from separate file
|
| 1003 |
+
questions = THESIS_QUESTIONS
|
| 1004 |
+
|
| 1005 |
+
report = analyzer.process_questions_only(
|
| 1006 |
+
pdf_path=req.storageKey,
|
| 1007 |
+
questions=questions,
|
| 1008 |
+
output_file="hipaa_answers_only"
|
| 1009 |
+
)
|
| 1010 |
+
|
| 1011 |
+
analyzer.cleanup_session()
|
| 1012 |
+
return report
|
| 1013 |
+
except Exception as e:
|
| 1014 |
+
print(f"Error in get_answer: {e}")
|
| 1015 |
+
return {"error": str(e)}
|
| 1016 |
+
|
| 1017 |
+
@app.post('/get_annotations')
|
| 1018 |
+
def get_annotations(req: AnalyzeReq):
|
| 1019 |
+
"""Get PubTator annotations only"""
|
| 1020 |
+
try:
|
| 1021 |
+
analyzer = HIPAACompliantThesisAnalyzer(
|
| 1022 |
+
user_id=req.userId,
|
| 1023 |
+
password=req.password,
|
| 1024 |
+
session_timeout=30,
|
| 1025 |
+
model_name=req.model_name
|
| 1026 |
+
)
|
| 1027 |
+
|
| 1028 |
+
report = analyzer.process_annotations_only(
|
| 1029 |
+
pdf_path=req.storageKey,
|
| 1030 |
+
output_file="hipaa_annotations_only"
|
| 1031 |
+
)
|
| 1032 |
+
|
| 1033 |
+
analyzer.cleanup_session()
|
| 1034 |
+
return report
|
| 1035 |
+
except Exception as e:
|
| 1036 |
+
print(f"Error in get_annotations: {e}")
|
| 1037 |
+
return {"error": str(e)}
|
| 1038 |
|
| 1039 |
@app.post('/analyze')
|
| 1040 |
def analyze(req: AnalyzeReq):
|
|
|
|
| 1047 |
analyzer = HIPAACompliantThesisAnalyzer(
|
| 1048 |
user_id=req.userId,
|
| 1049 |
password=req.password,
|
| 1050 |
+
session_timeout=30,
|
| 1051 |
+
model_name=req.model_name
|
| 1052 |
)
|
| 1053 |
|
| 1054 |
pdf_path = req.storageKey
|
| 1055 |
|
| 1056 |
+
# Use questions from separate file
|
| 1057 |
+
questions = THESIS_QUESTIONS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1058 |
|
| 1059 |
# Process document securely
|
| 1060 |
print("\nProcessing document with HIPAA compliance...")
|
|
|
|
| 1115 |
|
| 1116 |
""")
|
| 1117 |
|
| 1118 |
+
#main()
|
pubtator_annotator.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import time
|
| 3 |
+
import json
|
| 4 |
+
|
| 5 |
+
class PubTatorAnnotator:
|
| 6 |
+
SUBMIT_URL = "https://www.ncbi.nlm.nih.gov/research/pubtator-api/public/annotate/submit"
|
| 7 |
+
RECEIVE_URL = "https://www.ncbi.nlm.nih.gov/research/pubtator-api/public/annotate/"
|
| 8 |
+
|
| 9 |
+
def annotate_text(self, text):
|
| 10 |
+
try:
|
| 11 |
+
response = requests.post(self.SUBMIT_URL, json={"text": text})
|
| 12 |
+
response.raise_for_status()
|
| 13 |
+
submit_result = response.json()
|
| 14 |
+
session_id = submit_result.get("session_id")
|
| 15 |
+
|
| 16 |
+
if not session_id:
|
| 17 |
+
print("No session ID returned.")
|
| 18 |
+
return None
|
| 19 |
+
|
| 20 |
+
print(f"Session ID: {session_id}. Waiting for processing...")
|
| 21 |
+
time.sleep(5) # allow server time to annotate
|
| 22 |
+
|
| 23 |
+
return self._retrieve_annotations(session_id)
|
| 24 |
+
|
| 25 |
+
except requests.exceptions.RequestException as e:
|
| 26 |
+
print(f"Error submitting text: {e}")
|
| 27 |
+
return None
|
| 28 |
+
|
| 29 |
+
def _retrieve_annotations(self, session_id):
|
| 30 |
+
try:
|
| 31 |
+
result_url = f"{self.RECEIVE_URL}{session_id}"
|
| 32 |
+
response = requests.get(result_url)
|
| 33 |
+
response.raise_for_status()
|
| 34 |
+
result = response.json()
|
| 35 |
+
return result.get("annotations", [])
|
| 36 |
+
|
| 37 |
+
except Exception as e:
|
| 38 |
+
print(f"Error retrieving result: {e}")
|
| 39 |
+
return None
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
if __name__ == "__main__":
|
| 43 |
+
annotator = PubTatorAnnotator()
|
| 44 |
+
text = "The p53 tumor suppressor gene is frequently mutated in human cancers."
|
| 45 |
+
results = annotator.annotate_text(text)
|
| 46 |
+
|
| 47 |
+
if results is not None:
|
| 48 |
+
print(json.dumps(results, indent=2))
|
| 49 |
+
else:
|
| 50 |
+
print("No annotations found.")
|
questions.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Research analysis questions for thesis analyzer
|
| 2 |
+
|
| 3 |
+
THESIS_QUESTIONS = [
|
| 4 |
+
"What is the main objective of the research?",
|
| 5 |
+
"What methodology was used in the study?",
|
| 6 |
+
"What are the key findings or results?",
|
| 7 |
+
"What conclusions did the authors draw?",
|
| 8 |
+
"What are the limitations of the study?",
|
| 9 |
+
"What motivated the researchers to conduct this study?",
|
| 10 |
+
"How does this research relate to existing literature?",
|
| 11 |
+
"What are the practical implications of the findings?",
|
| 12 |
+
"What assumptions underlie the research?",
|
| 13 |
+
"What statistical methods were used to analyze the data?",
|
| 14 |
+
"How robust are the study's findings?",
|
| 15 |
+
"Are there any potential biases in the study design or data collection?",
|
| 16 |
+
"How do the results compare with previous studies on the same topic?",
|
| 17 |
+
"What are the potential future applications of this research?",
|
| 18 |
+
"How could this research be expanded or built upon in future studies?",
|
| 19 |
+
"What new questions have emerged as a result of this study?"
|
| 20 |
+
]
|
static/thesis.pdf
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|