import PyPDF2 import re from collections import Counter import os import nltk import transformers, logging, contextlib def setup_cache_directories(): """Setup cache directories for transformers and torch with proper permissions""" try: # Create cache directories in /app with proper permissions cache_dirs = { 'HF_HOME': '/app/.cache/huggingface', 'TORCH_HOME': '/app/.cache/torch' } for env_var, path in cache_dirs.items(): os.makedirs(path, exist_ok=True) os.chmod(path, 0o777) os.environ[env_var] = path # print(f"Cache directories setup complete: {cache_dirs}") except Exception as e: print(f"Warning: Cache directory setup failed: {e}") # Set NLTK data path BEFORE any other NLTK imports def setup_nltk_data(): """Setup NLTK data directory in container-writable location""" try: # Silence HuggingFace / Transformers logging transformers.utils.logging.set_verbosity_error() logging.getLogger("transformers").setLevel(logging.ERROR) # Use the app directory for NLTK data in container nltk_data_dir = '/app/nltk_data' # Ensure directory exists and is writable os.makedirs(nltk_data_dir, exist_ok=True) # Set NLTK data path - this must be done first nltk.data.path.clear() nltk.data.path.append(nltk_data_dir) # Also set the NLTK_DATA environment variable os.environ['NLTK_DATA'] = nltk_data_dir # Setup cache directories for transformers and torch setup_cache_directories() # Download required resources if not present required_resources = [ 'punkt', 'punkt_tab', 'stopwords', 'wordnet', 'omw-1.4' ] for resource in required_resources: try: nltk.data.find(f'tokenizers/{resource}' if 'punkt' in resource else f'corpora/{resource}') except LookupError: with contextlib.redirect_stdout(None): with contextlib.redirect_stderr(None): try: nltk.download(resource, download_dir=nltk_data_dir, quiet=True) except: pass # completely silent fallback except Exception as e: print(f"Warning: NLTK setup failed: {e}") # Call setup immediately after basic imports setup_nltk_data() # Now import NLTK modules after setup from nltk.tokenize import sent_tokenize, word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer import string from datetime import datetime, timedelta import json import torch from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline, BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM import warnings import fitz # PyMuPDF from PIL import Image, ImageEnhance, ImageFilter import io import base64 import os import pytesseract import hashlib import logging import getpass import tempfile import shutil import numpy as np from fastapi import FastAPI from fastapi.staticfiles import StaticFiles from pydantic import BaseModel from typing import List, Dict, Any, Optional from cryptography.fernet import Fernet from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC try: import cv2 import numpy as np OPENCV_AVAILABLE = True except ImportError: # print("OpenCV not available. Using PIL for image preprocessing.") from PIL import Image OPENCV_AVAILABLE = False from questions import THESIS_QUESTIONS from pubtator_annotator import PubTatorAnnotator warnings.filterwarnings('ignore') app = FastAPI(title='AI (PDF→Summary+QnA+Scores)', version='0.2.1') app.mount("/static", StaticFiles(directory="static"), name="static") class HIPAALogger: """HIPAA-compliant audit logging system""" def __init__(self, log_file="hipaa_audit.log"): # Create logs directory if it doesn't exist log_dir = '/app/logs' os.makedirs(log_dir, exist_ok=True) # Use the new log file path self.log_file = os.path.join(log_dir, log_file) self.logger = None self.setup_logging() def setup_logging(self): """Setup secure audit logging with fallback to console""" try: # Try to create file handler logging.basicConfig( filename=self.log_file, level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) self.logger = logging.getLogger('HIPAA_AUDIT') print(f"HIPAA logging initialized: {self.log_file}") except PermissionError: # Fallback to console logging if file writing fails logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) self.logger = logging.getLogger('HIPAA_AUDIT') print(f"Warning: Cannot write to {self.log_file}, using console logging") except Exception as e: # Fallback to console logging for any other error logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) self.logger = logging.getLogger('HIPAA_AUDIT') print(f"Warning: Logging setup failed ({e}), using console logging") def log_access(self, user_id, action, resource, success=True): """Log access attempts and actions""" status = "SUCCESS" if success else "FAILURE" message = f"USER:{user_id} ACTION:{action} RESOURCE:{resource} STATUS:{status}" self.logger.info(message) def log_phi_processing(self, user_id, document_hash, action): """Log PHI processing events""" message = f"PHI_PROCESSING USER:{user_id} DOC_HASH:{document_hash} ACTION:{action}" self.logger.info(message) class SecureFileHandler: """Secure file handling with encryption and secure deletion""" def __init__(self, password=None): self.password = password self.key = self._derive_key(password) if password else None self.fernet = Fernet(self.key) if self.key else None def _derive_key(self, password): """Derive encryption key from password""" password_bytes = password.encode() kdf = PBKDF2HMAC( algorithm=hashes.SHA256(), length=32, salt=b'hipaa_thesis_analyzer_salt', iterations=100000, ) key = base64.urlsafe_b64encode(kdf.derive(password_bytes)) return key def encrypt_data(self, data): """Encrypt sensitive data""" if not self.fernet: return data if isinstance(data, str): data = data.encode() return self.fernet.encrypt(data) def decrypt_data(self, encrypted_data): """Decrypt sensitive data""" if not self.fernet: return encrypted_data decrypted = self.fernet.decrypt(encrypted_data) return decrypted.decode() def secure_save(self, data, filepath): """Save data with encryption""" try: if self.fernet: encrypted_data = self.encrypt_data(json.dumps(data)) with open(filepath + '.enc', 'wb') as f: f.write(encrypted_data) else: with open(filepath, 'w', encoding='utf-8') as f: json.dump(data, f, indent=2) except PermissionError: print(f"Warning: Cannot write to {filepath}, saving to /tmp instead") # Fallback to /tmp directory import tempfile temp_path = os.path.join(tempfile.gettempdir(), os.path.basename(filepath)) if self.fernet: encrypted_data = self.encrypt_data(json.dumps(data)) with open(temp_path + '.enc', 'wb') as f: f.write(encrypted_data) else: with open(temp_path, 'w', encoding='utf-8') as f: json.dump(data, f, indent=2) print(f"Data saved to: {temp_path}") except Exception as e: print(f"Error saving data: {e}") # Still try to save to /tmp as last resort try: import tempfile temp_path = os.path.join(tempfile.gettempdir(), os.path.basename(filepath)) if self.fernet: encrypted_data = self.encrypt_data(json.dumps(data)) with open(temp_path + '.enc', 'wb') as f: f.write(encrypted_data) else: with open(temp_path, 'w', encoding='utf-8') as f: json.dump(data, f, indent=2) print(f"Data saved to fallback location: {temp_path}") except Exception as fallback_error: print(f"Failed to save data even to fallback location: {fallback_error}") def secure_load(self, filepath): """Load encrypted data""" if self.fernet and os.path.exists(filepath + '.enc'): with open(filepath + '.enc', 'rb') as f: encrypted_data = f.read() decrypted_data = self.decrypt_data(encrypted_data) return json.loads(decrypted_data) elif os.path.exists(filepath): with open(filepath, 'r', encoding='utf-8') as f: return json.load(f) return None def secure_delete(self, filepath): """Securely delete files by overwriting""" if os.path.exists(filepath): # Overwrite file multiple times before deletion file_size = os.path.getsize(filepath) with open(filepath, 'rb+') as f: for _ in range(3): # DoD 5220.22-M standard f.seek(0) f.write(os.urandom(file_size)) f.flush() os.remove(filepath) # Also check for encrypted version if os.path.exists(filepath + '.enc'): file_size = os.path.getsize(filepath + '.enc') with open(filepath + '.enc', 'rb+') as f: for _ in range(3): f.seek(0) f.write(os.urandom(file_size)) f.flush() os.remove(filepath + '.enc') class HIPAACompliantThesisAnalyzer: """HIPAA-compliant version of the thesis analyzer""" def __init__(self, user_id=None, password=None, session_timeout=30, model_name="t5-small"): self.user_id = user_id or getpass.getuser() self.session_timeout = session_timeout # minutes self.session_start = datetime.now() self.last_activity = datetime.now() self.model_name = model_name # Map model names to their optimal tasks and parameters self.model_configs = { "t5-small": {"task": "text2text-generation", "summarizer_task": "summarization"}, "t5-base": {"task": "text2text-generation", "summarizer_task": "summarization"}, "t5-large": {"task": "text2text-generation", "summarizer_task": "summarization"}, "bart-large-cnn": {"task": "text2text-generation", "summarizer_task": "summarization"}, "facebook/bart-base": {"task": "text2text-generation", "summarizer_task": "summarization"}, "distilbart-cnn-12-6": {"task": "text2text-generation", "summarizer_task": "summarization"}, "sshleifer/distilbart-cnn-6-6": {"task": "text2text-generation", "summarizer_task": "summarization"}, "pegasus-large": {"task": "text2text-generation", "summarizer_task": "summarization"}, "flan-t5-base": {"task": "text2text-generation", "summarizer_task": "summarization"}, "flan-t5-large": {"task": "text2text-generation", "summarizer_task": "summarization"} } # Initialize HIPAA compliance components self.hipaa_logger = HIPAALogger() self.secure_handler = SecureFileHandler(password) # Log session start self.hipaa_logger.log_access(self.user_id, "SESSION_START", "THESIS_ANALYZER") # Initialize base analyzer components self._initialize_analyzer() print(f"HIPAA-Compliant Thesis Analyzer initialized for user: {self.user_id}") print(f"Session timeout: {session_timeout} minutes") print(f"Encryption enabled: {'Yes' if password else 'No'}") def _initialize_analyzer(self): """Initialize the core analyzer components""" try: self.lemmatizer = WordNetLemmatizer() self.stop_words = set(stopwords.words('english')) except LookupError as e: print(f"NLTK resource error: {e}") self._download_nltk_resources() try: self.lemmatizer = WordNetLemmatizer() self.stop_words = set(stopwords.words('english')) except Exception as e2: print(f"Failed to initialize NLTK after download: {e2}") # Fallback to basic functionality self.lemmatizer = None self.stop_words = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by']) except Exception as e: print(f"Error initializing NLTK: {e}") # Fallback to basic functionality self.lemmatizer = None self.stop_words = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by']) self.thesis_text = "" self.sentences = [] self.key_terms = [] self.extracted_images = [] self.image_descriptions = [] self.ocr_results = [] self.use_ocr = True self.use_blip = True # Initialize Model print(f"Loading {self.model_name} model (HIPAA-compliant local processing)...") self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') try: # Try to load with explicit cache directory cache_dir = '/app/.cache/huggingface' self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, cache_dir=cache_dir) self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name, cache_dir=cache_dir) self.model.to(self.device) print(f"{self.model_name} loaded successfully from cache") except Exception as e: print(f"Error loading {self.model_name}: {e}") print("Attempting to load with fallback cache directory...") try: # Fallback to default cache self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name) self.model.to(self.device) print(f"{self.model_name} loaded with fallback cache") except Exception as e2: print(f"Failed to load {self.model_name}: {e2}") # Fallback to t5-small if requested model fails if self.model_name != "t5-small": print("Falling back to t5-small...") self.model_name = "t5-small" self.tokenizer = AutoTokenizer.from_pretrained("t5-small") self.model = AutoModelForSeq2SeqLM.from_pretrained("t5-small") self.model.to(self.device) else: raise e2 # Initialize pipelines try: self.summarizer = pipeline( "summarization", model=self.model, tokenizer=self.tokenizer, device=0 if torch.cuda.is_available() else -1, max_length=200, min_length=50, do_sample=True, temperature=0.7 ) self.qa_pipeline = pipeline( "text2text-generation", model=self.model, tokenizer=self.tokenizer, device=0 if torch.cuda.is_available() else -1, max_length=512, do_sample=True, temperature=0.7 ) print("Pipelines initialized successfully") except Exception as e: print(f"Error initializing pipelines: {e}") # Create fallback pipelines self.summarizer = None self.qa_pipeline = None # Initialize BLIP if enabled if self.use_blip: try: self.blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") self.blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") self.blip_model.to(self.device) print("BLIP model loaded for local image analysis") except Exception as e: print(f"BLIP model loading failed: {e}") self.use_blip = False # Check OCR availability if self.use_ocr: try: pytesseract.get_tesseract_version() print("Tesseract OCR available for local processing") except Exception as e: print(f"Tesseract OCR not available: {e}") self.use_ocr = False def _download_nltk_resources(self): """Download required NLTK resources to user directory""" # Use the same user-writable directory nltk_data_dir = os.path.join(os.path.expanduser('~'), 'nltk_data') os.makedirs(nltk_data_dir, exist_ok=True) nltk.data.path.append(nltk_data_dir) resources = [ ('tokenizers/punkt', 'punkt'), ('tokenizers/punkt_tab', 'punkt_tab'), ('corpora/stopwords', 'stopwords'), ('corpora/wordnet', 'wordnet'), ('corpora/omw-1.4', 'omw-1.4') ] for resource_path, resource_name in resources: try: nltk.data.find(resource_path) except LookupError: try: nltk.download(resource_name, download_dir=nltk_data_dir, quiet=True) print(f"Downloaded NLTK resource: {resource_name}") except Exception as e: print(f"Warning: Failed to download {resource_name}: {e}") def check_session_timeout(self): """Check if session has timed out""" time_since_start = datetime.now() - self.session_start time_since_activity = datetime.now() - self.last_activity if time_since_activity.total_seconds() > (self.session_timeout * 60): self.hipaa_logger.log_access(self.user_id, "SESSION_TIMEOUT", "THESIS_ANALYZER") raise Exception("Session timed out due to inactivity. Please restart for security.") self.last_activity = datetime.now() def calculate_document_hash(self, content): """Calculate secure hash of document content""" return hashlib.sha256(content.encode()).hexdigest() def _prepare_document(self, pdf_path): """Common method to prepare document for processing (extract text/images/OCR)""" self.check_session_timeout() # Calculate document hash for audit trail with open(pdf_path, 'rb') as f: doc_content = f.read() doc_hash = hashlib.sha256(doc_content).hexdigest()[:16] self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "DOCUMENT_LOAD") try: # Extract text and images text, images = self._extract_text_and_images(pdf_path) self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "TEXT_EXTRACTION") # Perform OCR if enabled ocr_results = [] if self.use_ocr and images: ocr_results = self._perform_secure_ocr(images) self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "OCR_PROCESSING") # Analyze images if BLIP enabled image_descriptions = [] if self.use_blip and images: image_descriptions = self._analyze_images_securely(images) self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "IMAGE_ANALYSIS") # Combine all text ocr_text = " ".join([result['ocr_text'] for result in ocr_results if result.get('ocr_text')]) combined_text = text + " " + ocr_text return combined_text, images, ocr_results, doc_hash except Exception as e: self.hipaa_logger.log_access(self.user_id, "PREPARATION_ERROR", pdf_path, success=False) raise e def process_document_securely(self, pdf_path, questions, output_file=None): """Process document with full HIPAA compliance""" combined_text, images, ocr_results, doc_hash = self._prepare_document(pdf_path) try: # Generate analysis sections = self._extract_key_sections(combined_text) key_terms = self._extract_key_terms(combined_text) summary = self._generate_summary_secure(combined_text) question_answers = self._answer_questions_secure(questions, combined_text) self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "ANALYSIS_COMPLETE") # Compile HIPAA-compliant report report = { "hipaa_compliance": { "processed_locally": True, "encrypted_storage": bool(self.secure_handler.fernet), "audit_logged": True, "user_id": self.user_id, "session_id": hashlib.md5(f"{self.user_id}{self.session_start}".encode()).hexdigest()[:8], "document_hash": doc_hash, "processing_timestamp": datetime.now().isoformat(), "no_external_apis": True, "local_processing_only": True }, "document_info": { "file_path": os.path.basename(pdf_path), # Only filename for privacy "analysis_timestamp": datetime.now().isoformat(), "total_characters": len(combined_text), "total_images": len(images), "device_used": str(self.device) }, "text_analysis": { "summary": summary, "key_terms": key_terms[:15], "sections_found": list(sections.keys()) }, "image_analysis": { "total_images_extracted": len(images), "images_with_text": len([r for r in ocr_results if r.get('has_text', False)]), "ocr_available": self.use_ocr, "blip_available": self.use_blip }, "question_responses": question_answers, "statistics": { "total_text_characters": len(combined_text), "ocr_text_characters": len([r['ocr_text'] for r in ocr_results if r.get('ocr_text')]), # Approximate "questions_processed": len(questions), "sections_identified": len(sections), "key_terms_extracted": len(key_terms) } } # Save securely if output file specified if output_file: self.secure_handler.secure_save(report, output_file) self.hipaa_logger.log_access(self.user_id, "REPORT_SAVE", output_file) return report except Exception as e: self.hipaa_logger.log_access(self.user_id, "PROCESSING_ERROR", pdf_path, success=False) raise e def process_summary_only(self, pdf_path, output_file=None): """Process document for summary only""" combined_text, images, ocr_results, doc_hash = self._prepare_document(pdf_path) try: # Generate summary summary = self._generate_summary_secure(combined_text) key_terms = self._extract_key_terms(combined_text) sections = self._extract_key_sections(combined_text) self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "SUMMARY_COMPLETE") report = { "hipaa_compliance": { "processed_locally": True, "user_id": self.user_id, "document_hash": doc_hash, "processing_timestamp": datetime.now().isoformat() }, "text_analysis": { "summary": summary, "key_terms": key_terms[:15], "sections_found": list(sections.keys()) } } if output_file: self.secure_handler.secure_save(report, output_file) return report except Exception as e: self.hipaa_logger.log_access(self.user_id, "SUMMARY_ERROR", pdf_path, success=False) raise e def process_questions_only(self, pdf_path, questions, output_file=None): """Process document for Q&A only""" combined_text, images, ocr_results, doc_hash = self._prepare_document(pdf_path) try: # Generate answers question_answers = self._answer_questions_secure(questions, combined_text) self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "QA_COMPLETE") report = { "hipaa_compliance": { "processed_locally": True, "user_id": self.user_id, "document_hash": doc_hash, "processing_timestamp": datetime.now().isoformat() }, "question_responses": question_answers } if output_file: self.secure_handler.secure_save(report, output_file) return report except Exception as e: self.hipaa_logger.log_access(self.user_id, "QA_ERROR", pdf_path, success=False) raise e def process_annotations_only(self, pdf_path, output_file=None): """Process document for PubTator annotations only""" combined_text, images, ocr_results, doc_hash = self._prepare_document(pdf_path) try: # Initialize PubTator Annotator # Note: PubTator legacy API might have issues, but we integrate as requested # Using 'Gene' as a valid concept example, though API might still error annotator = PubTatorAnnotator(bioconcept="Gene", output_format="JSON") print("Submitting text to PubTator for annotation...") annotations = annotator.annotate_text(combined_text) self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "ANNOTATION_COMPLETE") report = { "hipaa_compliance": { "processed_locally": False, # PubTator is external "user_id": self.user_id, "document_hash": doc_hash, "processing_timestamp": datetime.now().isoformat(), "external_api_used": "PubTator Legacy" }, "annotations": annotations if annotations is not None else "Failed to retrieve annotations" } if output_file: self.secure_handler.secure_save(report, output_file) return report except Exception as e: self.hipaa_logger.log_access(self.user_id, "ANNOTATION_ERROR", pdf_path, success=False) raise e def _extract_text_and_images(self, pdf_path): """Securely extract text and images from PDF""" text = "" images = [] try: # Use PyMuPDF for comprehensive extraction doc = fitz.open(pdf_path) for page_num in range(len(doc)): page = doc.load_page(page_num) # Extract text page_text = page.get_text() if page_text.strip(): text += page_text + "\n" # Extract images image_list = page.get_images() for img_index, img in enumerate(image_list): try: xref = img[0] pix = fitz.Pixmap(doc, xref) if pix.n - pix.alpha < 4: img_data = pix.tobytes("ppm") img_pil = Image.open(io.BytesIO(img_data)) image_info = { 'page': page_num + 1, 'index': img_index, 'image': img_pil, 'size': img_pil.size, 'format': img_pil.format or 'Unknown' } images.append(image_info) pix = None except Exception as e: print(f"Error extracting image {img_index} from page {page_num + 1}: {e}") continue doc.close() except Exception as e: print(f"Error in secure extraction: {e}") return text, images def _perform_secure_ocr(self, images): """Perform OCR with audit logging""" ocr_results = [] for i, img_info in enumerate(images): try: img = img_info['image'] if img.mode != 'RGB': img = img.convert('RGB') # Preprocess for OCR if OPENCV_AVAILABLE: img_array = np.array(img) gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY) denoised = cv2.medianBlur(gray, 3) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) enhanced = clahe.apply(denoised) _, thresh = cv2.threshold(enhanced, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) processed_img = Image.fromarray(thresh) else: gray = img.convert('L') enhancer = ImageEnhance.Contrast(gray) enhanced = enhancer.enhance(2.0) processed_img = enhanced.filter(ImageFilter.SHARPEN) # Perform OCR locally ocr_text = pytesseract.image_to_string(processed_img, config='--psm 6') ocr_result = { 'page': img_info['page'], 'image_index': img_info['index'], 'ocr_text': ocr_text.strip(), 'has_text': bool(ocr_text.strip()), 'processing_method': 'Local_OCR' } ocr_results.append(ocr_result) except Exception as e: ocr_results.append({ 'page': img_info['page'], 'image_index': img_info['index'], 'ocr_text': '', 'has_text': False, 'error': str(e) }) return ocr_results def _analyze_images_securely(self, images): """Analyze images locally with BLIP""" if not self.use_blip: return [] descriptions = [] for img_info in images: try: image = img_info['image'] if image.mode != 'RGB': image = image.convert('RGB') inputs = self.blip_processor(image, return_tensors="pt").to(self.device) with torch.no_grad(): out = self.blip_model.generate(**inputs, max_length=100, num_beams=5) caption = self.blip_processor.decode(out[0], skip_special_tokens=True) description = { 'page': img_info['page'], 'image_index': img_info['index'], 'caption': caption, 'processing_method': 'Local_BLIP' } descriptions.append(description) except Exception as e: descriptions.append({ 'page': img_info['page'], 'image_index': img_info['index'], 'caption': 'Analysis failed', 'error': str(e) }) return descriptions def _extract_key_sections(self, text): """Extract key sections from text""" sections = {} section_patterns = { 'abstract': r'abstract\s*:?\s*(.*?)(?=\n\s*(?:introduction|chapter|acknowledgment|table of contents))', 'introduction': r'introduction\s*:?\s*(.*?)(?=\n\s*(?:literature review|methodology|chapter|background))', 'methodology': r'(?:methodology|methods)\s*:?\s*(.*?)(?=\n\s*(?:results|findings|analysis|chapter))', 'results': r'(?:results|findings)\s*:?\s*(.*?)(?=\n\s*(?:discussion|conclusion|chapter))', 'conclusion': r'conclusion\s*:?\s*(.*?)(?=\n\s*(?:references|bibliography|appendix))' } for section_name, pattern in section_patterns.items(): match = re.search(pattern, text.lower(), re.DOTALL | re.IGNORECASE) if match: sections[section_name] = match.group(1).strip()[:1000] # Truncate for privacy return sections def _extract_key_terms(self, text): """Extract key terms securely""" try: words = re.findall(r'\b[a-zA-Z]+\b', text.lower()) # Handle case where lemmatizer might be None if self.lemmatizer is not None: words = [ self.lemmatizer.lemmatize(word) for word in words if word not in self.stop_words and len(word) > 3 and word.isalpha() ] else: # Fallback without lemmatization words = [ word for word in words if word not in self.stop_words and len(word) > 3 and word.isalpha() ] word_freq = Counter(words) return [term for term, freq in word_freq.most_common(20)] except Exception as e: print(f"Error in key term extraction: {e}") return [] def _generate_summary_secure(self, text): """Generate summary using local T5 model""" try: if self.summarizer is None: print("Summarizer not available, using fallback method") # Fallback to extractive summary sentences = re.split(r'[.!?]+', text) return " ".join(sentences[:3]) + "..." clean_text = re.sub(r'\s+', ' ', text).strip() # Chunk text for processing max_length = 1000 if len(clean_text) > max_length: clean_text = clean_text[:max_length] summary = self.summarizer( clean_text, max_length=200, min_length=150, do_sample=True, temperature=0.7 ) return summary[0]['summary_text'] except Exception as e: print(f"Error in T5 summarization: {e}") # Fallback to extractive summary sentences = re.split(r'[.!?]+', text) return " ".join(sentences[:3]) + "..." def _answer_questions_secure(self, questions, text): """Answer questions using local T5 model""" answers = {} for question in questions: try: if self.qa_pipeline is None: answers[question] = { 'answer': 'Q&A pipeline not available - using fallback', 'method': 'Fallback', 'processed_securely': True } continue prompt = f"question: {question} context: {text[:1000]}" answer_result = self.qa_pipeline( prompt, max_length=200, min_length=30, do_sample=True, temperature=0.7, num_return_sequences=1 ) answer = answer_result[0]['generated_text'] answer = re.sub(r'^(answer:|Answer:)', '', answer).strip() answers[question] = { 'answer': answer, 'method': 'Local_T5', 'processed_securely': True } except Exception as e: answers[question] = { 'answer': 'Unable to process question securely', 'error': str(e), 'method': 'Error' } return answers def cleanup_session(self): """Clean up session data securely""" self.hipaa_logger.log_access(self.user_id, "SESSION_END", "THESIS_ANALYZER") # Clear sensitive data from memory self.thesis_text = "" self.extracted_images = [] self.ocr_results = [] self.image_descriptions = [] # Clear model cache if needed if hasattr(torch.cuda, 'empty_cache'): torch.cuda.empty_cache() print("Session cleaned up securely") class AnalyzeReq(BaseModel): storageKey: str # path to PDF on disk (or adjust to your storage scheme) projectId: Optional[str] = None documentId: Optional[str] = None ocr: bool = False blip: bool = False userId:str password:str useEncryption: bool =False model_name: Optional[str] = "t5-small" @app.post('/get_summary') def get_summary(req: AnalyzeReq): """Get summary only""" try: analyzer = HIPAACompliantThesisAnalyzer( user_id=req.userId, password=req.password, session_timeout=30, model_name=req.model_name ) report = analyzer.process_summary_only( pdf_path=req.storageKey, output_file="hipaa_summary_only" ) analyzer.cleanup_session() return report except Exception as e: print(f"Error in get_summary: {e}") return {"error": str(e)} @app.post('/get_answer') def get_answer(req: AnalyzeReq): """Get answers only""" try: analyzer = HIPAACompliantThesisAnalyzer( user_id=req.userId, password=req.password, session_timeout=30, model_name=req.model_name ) # Use questions from separate file questions = THESIS_QUESTIONS report = analyzer.process_questions_only( pdf_path=req.storageKey, questions=questions, output_file="hipaa_answers_only" ) analyzer.cleanup_session() return report except Exception as e: print(f"Error in get_answer: {e}") return {"error": str(e)} @app.post('/get_annotations') def get_annotations(req: AnalyzeReq): """Get PubTator annotations only""" try: analyzer = HIPAACompliantThesisAnalyzer( user_id=req.userId, password=req.password, session_timeout=30, model_name=req.model_name ) report = analyzer.process_annotations_only( pdf_path=req.storageKey, output_file="hipaa_annotations_only" ) analyzer.cleanup_session() return report except Exception as e: print(f"Error in get_annotations: {e}") return {"error": str(e)} @app.post('/analyze') def analyze(req: AnalyzeReq): """Main function with HIPAA compliance demonstration""" print("HIPAA-COMPLIANT THESIS ANALYZER") print("=" * 50) try: # Initialize HIPAA-compliant analyzer analyzer = HIPAACompliantThesisAnalyzer( user_id=req.userId, password=req.password, session_timeout=30, model_name=req.model_name ) pdf_path = req.storageKey # Use questions from separate file questions = THESIS_QUESTIONS # Process document securely print("\nProcessing document with HIPAA compliance...") report = analyzer.process_document_securely( pdf_path=pdf_path, questions=questions, output_file="hipaa_compliant_analysis" ) print("\n" + "="*60) print("HIPAA-COMPLIANT ANALYSIS COMPLETE") print("="*60) print(f"✓ Processed locally: {report['hipaa_compliance']['processed_locally']}") print(f"✓ Encrypted storage: {report['hipaa_compliance']['encrypted_storage']}") print(f"✓ Audit logged: {report['hipaa_compliance']['audit_logged']}") print(f"✓ No external APIs: {report['hipaa_compliance']['no_external_apis']}") print(f"✓ Session ID: {report['hipaa_compliance']['session_id']}") # Cleanup analyzer.cleanup_session() return report except Exception as e: print(f"Error: {e}") print("Ensure all requirements are installed and Tesseract is available.") #if __name__ == "__main__": print(""" HIPAA-COMPLIANT THESIS ANALYZER =============================== HIPAA COMPLIANCE FEATURES: ✓ Local processing only - no external API calls ✓ Encryption at rest with password protection ✓ Comprehensive audit logging ✓ Session timeout and access controls ✓ Secure file deletion ✓ PHI processing audit trail ✓ User authentication ✓ Data integrity verification INSTALLATION: pip install torch transformers PyPDF2 nltk PyMuPDF pillow pytesseract cryptography SECURITY FEATURES: - All processing happens locally - Optional file encryption - Secure memory cleanup - Audit trail for all operations - Session management with timeouts - Secure file overwriting for deletion COMPLIANCE NOTES: - This tool provides technical safeguards - You must implement administrative and physical safeguards - Ensure your workstation meets HIPAA requirements - Regular security assessments recommended """) #main()