Spaces:
Build error
Build error
Commit
·
6d24ac5
1
Parent(s):
46c3233
Upload 2 files
Browse files- app.py +306 -0
- requirement.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Import required libraries
|
| 2 |
+
import os
|
| 3 |
+
import io
|
| 4 |
+
import torch
|
| 5 |
+
import tempfile
|
| 6 |
+
import numpy as np
|
| 7 |
+
import streamlit as st
|
| 8 |
+
|
| 9 |
+
# Import utility and custom functions
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from Util.DICOM import DICOM_Utils
|
| 12 |
+
from Util.Custom_Model import Build_Custom_Model, reshape_transform
|
| 13 |
+
|
| 14 |
+
# Import additional MONAI and PyTorch Grad-CAM utilities
|
| 15 |
+
from monai.config import print_config
|
| 16 |
+
from monai.utils import set_determinism
|
| 17 |
+
from monai.networks.nets import SEResNet50
|
| 18 |
+
from monai.transforms import (
|
| 19 |
+
Activations,
|
| 20 |
+
EnsureChannelFirst,
|
| 21 |
+
AsDiscrete,
|
| 22 |
+
Compose,
|
| 23 |
+
LoadImage,
|
| 24 |
+
RandFlip,
|
| 25 |
+
RandRotate,
|
| 26 |
+
RandZoom,
|
| 27 |
+
ScaleIntensity,
|
| 28 |
+
AsChannelFirst,
|
| 29 |
+
AddChannel,
|
| 30 |
+
RandSpatialCrop,
|
| 31 |
+
ScaleIntensityRangePercentiles,
|
| 32 |
+
Resize,
|
| 33 |
+
)
|
| 34 |
+
from pytorch_grad_cam import GradCAM
|
| 35 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
| 36 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# (Int) Random seed
|
| 40 |
+
SEED = 0
|
| 41 |
+
|
| 42 |
+
# (Int) Model parameters
|
| 43 |
+
NUM_CLASSES = 1
|
| 44 |
+
|
| 45 |
+
# (String) CT Model directory
|
| 46 |
+
CT_MODEL_DIRECTORY = "C:\\Src\\GitHub\\AI_UI\\models\\CLOTS\\CT"
|
| 47 |
+
|
| 48 |
+
# (String) MRI Model directory
|
| 49 |
+
MRI_MODEL_DIRECTORY = "C:\\Src\\GitHub\\AI_UI\\models\\CLOTS\\MRI"
|
| 50 |
+
|
| 51 |
+
# (Boolean) Use custom model
|
| 52 |
+
CUSTOM_MODEL_FLAG = True
|
| 53 |
+
|
| 54 |
+
# (List[int]) Image size
|
| 55 |
+
SPATIAL_SIZE = [224, 224]
|
| 56 |
+
|
| 57 |
+
# (String) CT Model file name
|
| 58 |
+
CT_MODEL_FILE_NAME = "best_metric_model.pth"
|
| 59 |
+
|
| 60 |
+
# (String) MRI Model file name
|
| 61 |
+
MRI_MODEL_FILE_NAME = "best_metric_model.pth"
|
| 62 |
+
|
| 63 |
+
# (Boolean) List model modules
|
| 64 |
+
LIST_MODEL_MODULES = False
|
| 65 |
+
|
| 66 |
+
# (String) Model name
|
| 67 |
+
CT_MODEL_NAME = "swin_base_patch4_window7_224"
|
| 68 |
+
|
| 69 |
+
# (String) Model name
|
| 70 |
+
MRI_MODEL_NAME = "swin_base_patch4_window7_224"
|
| 71 |
+
|
| 72 |
+
# (Float) Model inference threshold
|
| 73 |
+
CT_INFERENCE_THRESHOLD = 0.5
|
| 74 |
+
|
| 75 |
+
# (Float) Model inference threshold
|
| 76 |
+
MRI_INFERENCE_THRESHOLD = 0.5
|
| 77 |
+
|
| 78 |
+
# (Int) Display CAM Class ID
|
| 79 |
+
CAM_CLASS_ID = 0
|
| 80 |
+
|
| 81 |
+
# (Int) Window Center for image display
|
| 82 |
+
DEFAULT_CT_WINDOW_CENTER = 40
|
| 83 |
+
|
| 84 |
+
# (Int) Window Width for image display
|
| 85 |
+
DEFAULT_CT_WINDOW_WIDTH = 100
|
| 86 |
+
|
| 87 |
+
# (Int) Window Center for image display
|
| 88 |
+
DEFAULT_MRI_WINDOW_CENTER = 400
|
| 89 |
+
|
| 90 |
+
# (Int) Window Width for image display
|
| 91 |
+
DEFAULT_MRI_WINDOW_WIDTH = 1000
|
| 92 |
+
|
| 93 |
+
# (Int) Minimum value for Window Center
|
| 94 |
+
WINDOW_CENTER_MIN = -600
|
| 95 |
+
|
| 96 |
+
# (Int) Maximum value for Window Center
|
| 97 |
+
WINDOW_CENTER_MAX = 1000
|
| 98 |
+
|
| 99 |
+
# (Int) Minimum value for Window Width
|
| 100 |
+
WINDOW_WIDTH_MIN = 1
|
| 101 |
+
|
| 102 |
+
# (Int) Maximum value for Window Width
|
| 103 |
+
WINDOW_WIDTH_MAX = 3000
|
| 104 |
+
|
| 105 |
+
# Evaluation Transforms
|
| 106 |
+
eval_transforms = Compose(
|
| 107 |
+
[
|
| 108 |
+
LoadImage(image_only=True),
|
| 109 |
+
AsChannelFirst(),
|
| 110 |
+
ScaleIntensityRangePercentiles(lower=20, upper=80, b_min=0.0, b_max=1.0, clip=False, relative=True),
|
| 111 |
+
Resize(spatial_size=SPATIAL_SIZE)
|
| 112 |
+
]
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
# CAM Original Transforms
|
| 116 |
+
cam_original_transforms = Compose(
|
| 117 |
+
[
|
| 118 |
+
LoadImage(image_only=True),
|
| 119 |
+
AsChannelFirst(),
|
| 120 |
+
Resize(spatial_size=SPATIAL_SIZE)
|
| 121 |
+
]
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
# CAM Original Transforms
|
| 125 |
+
original_transforms = Compose(
|
| 126 |
+
[
|
| 127 |
+
LoadImage(image_only=True),
|
| 128 |
+
AsChannelFirst()
|
| 129 |
+
]
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
# Function to convert PIL Image to byte stream in PNG format for downloading
|
| 133 |
+
def image_to_bytes(image):
|
| 134 |
+
byte_stream = io.BytesIO()
|
| 135 |
+
image.save(byte_stream, format='PNG')
|
| 136 |
+
return byte_stream.getvalue()
|
| 137 |
+
|
| 138 |
+
set_determinism(seed=SEED)
|
| 139 |
+
torch.manual_seed(SEED)
|
| 140 |
+
|
| 141 |
+
# Parameters
|
| 142 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 143 |
+
ct_root_dir = tempfile.mkdtemp() if CT_MODEL_DIRECTORY is None else CT_MODEL_DIRECTORY
|
| 144 |
+
mri_root_dir = tempfile.mkdtemp() if MRI_MODEL_DIRECTORY is None else MRI_MODEL_DIRECTORY
|
| 145 |
+
|
| 146 |
+
def load_model(root_dir, model_name, model_file_name):
|
| 147 |
+
if CUSTOM_MODEL_FLAG:
|
| 148 |
+
model = Build_Custom_Model(model_name, NUM_CLASSES, pretrained=False).to(device)
|
| 149 |
+
else:
|
| 150 |
+
model = SEResNet50(spatial_dims=2, in_channels=1, num_classes=NUM_CLASSES).to(device)
|
| 151 |
+
model.load_state_dict(torch.load(os.path.join(root_dir, model_file_name)))
|
| 152 |
+
model.eval()
|
| 153 |
+
return model
|
| 154 |
+
|
| 155 |
+
ct_model = load_model(ct_root_dir, CT_MODEL_NAME, CT_MODEL_FILE_NAME)
|
| 156 |
+
mri_model = load_model(mri_root_dir, MRI_MODEL_NAME, MRI_MODEL_FILE_NAME)
|
| 157 |
+
if LIST_MODEL_MODULES:
|
| 158 |
+
for ct_name, _ in ct_model.named_modules():
|
| 159 |
+
print(ct_name)
|
| 160 |
+
|
| 161 |
+
for mri_name, _ in mri_model.named_modules():
|
| 162 |
+
print(mri_name)
|
| 163 |
+
|
| 164 |
+
# Initialize Streamlit
|
| 165 |
+
st.title("Analyze")
|
| 166 |
+
|
| 167 |
+
# Use Streamlit's number_input to adjust WINDOW_CENTER and WINDOW_WIDTH
|
| 168 |
+
st.sidebar.header("Windowing Parameters for DICOM")
|
| 169 |
+
CT_WINDOW_CENTER = st.sidebar.number_input("CT Window Center", min_value=WINDOW_CENTER_MIN, max_value=WINDOW_CENTER_MAX, value=DEFAULT_CT_WINDOW_CENTER, step=1)
|
| 170 |
+
CT_WINDOW_WIDTH = st.sidebar.number_input("CT Window Width", min_value=WINDOW_WIDTH_MIN, max_value=WINDOW_WIDTH_MAX, value=DEFAULT_CT_WINDOW_WIDTH, step=1)
|
| 171 |
+
MRI_WINDOW_CENTER = st.sidebar.number_input("MRI Window Center", min_value=WINDOW_CENTER_MIN, max_value=WINDOW_CENTER_MAX, value=DEFAULT_MRI_WINDOW_CENTER, step=1)
|
| 172 |
+
MRI_WINDOW_WIDTH = st.sidebar.number_input("MRI Window Width", min_value=WINDOW_WIDTH_MIN, max_value=WINDOW_WIDTH_MAX, value=DEFAULT_MRI_WINDOW_WIDTH, step=1)
|
| 173 |
+
|
| 174 |
+
uploaded_ct_file = st.file_uploader("Upload a candidate CT DICOM", type=["dcm"])
|
| 175 |
+
if uploaded_ct_file is not None:
|
| 176 |
+
# Save the uploaded file to a temporary location
|
| 177 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".dcm") as temp_file:
|
| 178 |
+
temp_file.write(uploaded_ct_file.getvalue())
|
| 179 |
+
|
| 180 |
+
# Apply evaluation transforms to the DICOM image for model prediction
|
| 181 |
+
image_tensor = eval_transforms(temp_file.name).unsqueeze(0).to(device)
|
| 182 |
+
|
| 183 |
+
# Predict
|
| 184 |
+
with torch.no_grad():
|
| 185 |
+
outputs = ct_model(image_tensor).sigmoid().to("cpu").numpy()
|
| 186 |
+
prob = outputs[0][0]
|
| 187 |
+
CLOTS_CLASSIFICATION = False
|
| 188 |
+
if(prob >= CT_INFERENCE_THRESHOLD):
|
| 189 |
+
CLOTS_CLASSIFICATION=True
|
| 190 |
+
|
| 191 |
+
st.header("CT Classification")
|
| 192 |
+
st.subheader(f"Ischaemic Stroke : {CLOTS_CLASSIFICATION}")
|
| 193 |
+
st.subheader(f"Confidence : {prob * 100:.1f}%")
|
| 194 |
+
|
| 195 |
+
# Load the original DICOM image for download
|
| 196 |
+
download_image_tensor = original_transforms(temp_file.name).unsqueeze(0).to(device)
|
| 197 |
+
download_image = download_image_tensor.squeeze()
|
| 198 |
+
|
| 199 |
+
# Transform the download image and apply windowing
|
| 200 |
+
transformed_download_image = DICOM_Utils.transform_image_for_display(download_image)
|
| 201 |
+
windowed_download_image = DICOM_Utils.apply_windowing(transformed_download_image, CT_WINDOW_CENTER, CT_WINDOW_WIDTH)
|
| 202 |
+
|
| 203 |
+
# Streamlit button to trigger image download
|
| 204 |
+
image_data = image_to_bytes(Image.fromarray(windowed_download_image))
|
| 205 |
+
st.download_button(
|
| 206 |
+
label="Download CT Image",
|
| 207 |
+
data=image_data,
|
| 208 |
+
file_name="downloaded_ct_image.png",
|
| 209 |
+
mime="image/png"
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
# Load the original DICOM image for display
|
| 213 |
+
display_image_tensor = cam_original_transforms(temp_file.name).unsqueeze(0).to(device)
|
| 214 |
+
display_image = display_image_tensor.squeeze()
|
| 215 |
+
|
| 216 |
+
# Transform the image and apply windowing
|
| 217 |
+
transformed_image = DICOM_Utils.transform_image_for_display(display_image)
|
| 218 |
+
windowed_image = DICOM_Utils.apply_windowing(transformed_image, CT_WINDOW_CENTER, CT_WINDOW_WIDTH)
|
| 219 |
+
st.image(Image.fromarray(windowed_image), caption="Original CT Visualization", use_column_width=True)
|
| 220 |
+
|
| 221 |
+
# Expand to three channels
|
| 222 |
+
windowed_image = np.expand_dims(windowed_image, axis=2)
|
| 223 |
+
windowed_image = np.tile(windowed_image, [1, 1, 3])
|
| 224 |
+
|
| 225 |
+
# Ensure both are of float32 type
|
| 226 |
+
windowed_image = windowed_image.astype(np.float32)
|
| 227 |
+
|
| 228 |
+
# Normalize to [0, 1] range
|
| 229 |
+
windowed_image = np.float32(windowed_image) / 255
|
| 230 |
+
|
| 231 |
+
# Build the CAM (Class Activation Map)
|
| 232 |
+
target_layers = [ct_model.model.norm]
|
| 233 |
+
cam = GradCAM(model=ct_model, target_layers=target_layers, reshape_transform=reshape_transform, use_cuda=True)
|
| 234 |
+
grayscale_cam = cam(input_tensor=image_tensor, targets=[ClassifierOutputTarget(CAM_CLASS_ID)])
|
| 235 |
+
grayscale_cam = grayscale_cam[0, :]
|
| 236 |
+
|
| 237 |
+
# Now you can safely call the show_cam_on_image function
|
| 238 |
+
visualization = show_cam_on_image(windowed_image, grayscale_cam, use_rgb=True)
|
| 239 |
+
st.image(Image.fromarray(visualization), caption="CAM CT Visualization", use_column_width=True)
|
| 240 |
+
|
| 241 |
+
uploaded_mri_file = st.file_uploader("Upload a candidate MRI DICOM", type=["dcm"])
|
| 242 |
+
if uploaded_mri_file is not None:
|
| 243 |
+
# Save the uploaded file to a temporary location
|
| 244 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".dcm") as temp_file:
|
| 245 |
+
temp_file.write(uploaded_mri_file.getvalue())
|
| 246 |
+
|
| 247 |
+
# Apply evaluation transforms to the DICOM image for model prediction
|
| 248 |
+
image_tensor = eval_transforms(temp_file.name).unsqueeze(0).to(device)
|
| 249 |
+
|
| 250 |
+
# Predict
|
| 251 |
+
with torch.no_grad():
|
| 252 |
+
outputs = mri_model(image_tensor).sigmoid().to("cpu").numpy()
|
| 253 |
+
prob = outputs[0][0]
|
| 254 |
+
CLOTS_CLASSIFICATION = False
|
| 255 |
+
if(prob >= MRI_INFERENCE_THRESHOLD):
|
| 256 |
+
CLOTS_CLASSIFICATION=True
|
| 257 |
+
|
| 258 |
+
st.header("MRI Classification")
|
| 259 |
+
st.subheader(f"Ischaemic Stroke : {CLOTS_CLASSIFICATION}")
|
| 260 |
+
st.subheader(f"Confidence : {prob * 100:.1f}%")
|
| 261 |
+
|
| 262 |
+
# Load the original DICOM image for download
|
| 263 |
+
download_image_tensor = original_transforms(temp_file.name).unsqueeze(0).to(device)
|
| 264 |
+
download_image = download_image_tensor.squeeze()
|
| 265 |
+
|
| 266 |
+
# Transform the download image and apply windowing
|
| 267 |
+
transformed_download_image = DICOM_Utils.transform_image_for_display(download_image)
|
| 268 |
+
windowed_download_image = DICOM_Utils.apply_windowing(transformed_download_image, MRI_WINDOW_CENTER, MRI_WINDOW_WIDTH)
|
| 269 |
+
|
| 270 |
+
# Streamlit button to trigger image download
|
| 271 |
+
image_data = image_to_bytes(Image.fromarray(windowed_download_image))
|
| 272 |
+
st.download_button(
|
| 273 |
+
label="Download MRI Image",
|
| 274 |
+
data=image_data,
|
| 275 |
+
file_name="downloaded_mri_image.png",
|
| 276 |
+
mime="image/png"
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
# Load the original DICOM image for display
|
| 280 |
+
display_image_tensor = cam_original_transforms(temp_file.name).unsqueeze(0).to(device)
|
| 281 |
+
display_image = display_image_tensor.squeeze()
|
| 282 |
+
|
| 283 |
+
# Transform the image and apply windowing
|
| 284 |
+
transformed_image = DICOM_Utils.transform_image_for_display(display_image)
|
| 285 |
+
windowed_image = DICOM_Utils.apply_windowing(transformed_image, MRI_WINDOW_CENTER, MRI_WINDOW_WIDTH)
|
| 286 |
+
st.image(Image.fromarray(windowed_image), caption="Original MRI Visualization", use_column_width=True)
|
| 287 |
+
|
| 288 |
+
# Expand to three channels
|
| 289 |
+
windowed_image = np.expand_dims(windowed_image, axis=2)
|
| 290 |
+
windowed_image = np.tile(windowed_image, [1, 1, 3])
|
| 291 |
+
|
| 292 |
+
# Ensure both are of float32 type
|
| 293 |
+
windowed_image = windowed_image.astype(np.float32)
|
| 294 |
+
|
| 295 |
+
# Normalize to [0, 1] range
|
| 296 |
+
windowed_image = np.float32(windowed_image) / 255
|
| 297 |
+
|
| 298 |
+
# Build the CAM (Class Activation Map)
|
| 299 |
+
target_layers = [mri_model.model.norm]
|
| 300 |
+
cam = GradCAM(model=mri_model, target_layers=target_layers, reshape_transform=reshape_transform, use_cuda=True)
|
| 301 |
+
grayscale_cam = cam(input_tensor=image_tensor, targets=[ClassifierOutputTarget(CAM_CLASS_ID)])
|
| 302 |
+
grayscale_cam = grayscale_cam[0, :]
|
| 303 |
+
|
| 304 |
+
# Now you can safely call the show_cam_on_image function
|
| 305 |
+
visualization = show_cam_on_image(windowed_image, grayscale_cam, use_rgb=True)
|
| 306 |
+
st.image(Image.fromarray(visualization), caption="CAM MRI Visualization", use_column_width=True)
|
requirement.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
gradio
|
| 3 |
+
monai
|