GradLLM / timesfm_backend.py
johnbridges's picture
.
81d8cd8
raw
history blame
7.9 kB
# timesfm_backend.py
import time, json, logging
from typing import Any, Dict, List, Optional
import numpy as np
import torch
from backends_base import ChatBackend, ImagesBackend
from config import settings
logger = logging.getLogger(__name__)
# --- TimesFM import (fallback-safe) ---
try:
from timesfm import TimesFm
_TIMESFM_AVAILABLE = True
except Exception as e:
logger.warning("timesfm not available (%s) — using naive fallback.", e)
TimesFm = None # type: ignore
_TIMESFM_AVAILABLE = False
# --- helpers ---
def _parse_series(series: Any) -> np.ndarray:
if series is None:
raise ValueError("series is required")
if isinstance(series, dict):
series = series.get("values") or series.get("y")
vals: List[float] = []
if isinstance(series, (list, tuple)):
if series and isinstance(series[0], dict):
for item in series:
if "y" in item: vals.append(float(item["y"]))
elif "value" in item: vals.append(float(item["value"]))
else:
vals = [float(x) for x in series]
else:
raise ValueError("series must be a list/tuple or dict with 'values'/'y'")
if not vals:
raise ValueError("series is empty")
return np.asarray(vals, dtype=np.float32)
def _fallback_forecast(y: np.ndarray, horizon: int) -> np.ndarray:
if horizon <= 0:
return np.zeros((0,), dtype=np.float32)
k = 4 if y.shape[0] >= 4 else y.shape[0]
base = float(np.mean(y[-k:]))
return np.full((horizon,), base, dtype=np.float32)
def _extract_json_from_text(s: str) -> Optional[Dict[str, Any]]:
s = s.strip()
# whole-string JSON
if (s.startswith("{") and s.endswith("}")) or (s.startswith("[") and s.endswith("]")):
try:
obj = json.loads(s)
return obj if isinstance(obj, dict) else None
except Exception:
pass
# fenced ```json ... ```
if "```" in s:
parts = s.split("```")
for i in range(1, len(parts), 2):
block = parts[i]
if block.lstrip().lower().startswith("json"):
block = block.split("\n", 1)[-1]
try:
obj = json.loads(block.strip())
return obj if isinstance(obj, dict) else None
except Exception:
continue
return None
def _merge_openai_message_json(payload: Dict[str, Any]) -> Dict[str, Any]:
"""
OpenAI chat format:
messages: [{role, content}, ...]
content can be a string or a list of parts: [{"type":"text","text":"..."}]
We scan from last to first user message and merge first JSON dict found.
"""
msgs = payload.get("messages")
if not isinstance(msgs, list):
return payload
for m in reversed(msgs):
if not isinstance(m, dict) or m.get("role") != "user":
continue
c = m.get("content")
# Text parts array
if isinstance(c, list):
texts = [p.get("text") for p in c if isinstance(p, dict) and p.get("type") == "text" and isinstance(p.get("text"), str)]
for t in reversed(texts):
obj = _extract_json_from_text(t)
if isinstance(obj, dict):
return {**payload, **obj}
# Plain string
if isinstance(c, str):
obj = _extract_json_from_text(c)
if isinstance(obj, dict):
return {**payload, **obj}
return payload
# --- backend ---
class TimesFMBackend(ChatBackend):
"""
Accepts OpenAI chat-completions requests.
Pulls timeseries config from:
- top-level keys, OR
- payload['data'] (CloudEvents), OR
- last user message JSON (OpenAI format, string or text-part).
Keys: series: list[float|{y|value}], horizon: int, freq: str (optional)
"""
def __init__(self, model_id: Optional[str] = None, device: Optional[str] = None):
self.model_id = model_id or "google/timesfm-2.5-200m-pytorch"
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self._model: Optional[TimesFm] = None # type: ignore
def _ensure_model(self) -> None:
if self._model is not None or not _TIMESFM_AVAILABLE:
return
try:
self._model = TimesFm(context_len=512, horizon_len=128, input_patch_len=32)
self._model.load_from_checkpoint(self.model_id)
try:
self._model.to(self.device) # type: ignore[attr-defined]
except Exception:
pass
logger.info("TimesFM loaded from %s on %s", self.model_id, self.device)
except Exception as e:
logger.exception("TimesFM init failed; fallback only. %s", e)
self._model = None
async def forecast(self, payload: Dict[str, Any]) -> Dict[str, Any]:
# unwrap CloudEvents .data and nested .timeseries
if isinstance(payload.get("data"), dict):
payload = {**payload, **payload["data"]}
if isinstance(payload.get("timeseries"), dict):
payload = {**payload, **payload["timeseries"]}
# merge JSON embedded in last user message (OpenAI format)
payload = _merge_openai_message_json(payload)
y = _parse_series(payload.get("series"))
horizon = int(payload.get("horizon", 0))
freq = payload.get("freq")
if horizon <= 0:
raise ValueError("horizon must be a positive integer")
self._ensure_model()
note = None
if _TIMESFM_AVAILABLE and self._model is not None:
try:
x = torch.tensor(y, dtype=torch.float32, device=self.device).unsqueeze(0) # [1,T]
preds = self._model.forecast_on_batch(x, horizon) # -> [1,H]
fc = preds[0].detach().cpu().numpy().astype(float).tolist()
except Exception as e:
logger.exception("TimesFM forecast failed; fallback used. %s", e)
fc = _fallback_forecast(y, horizon).tolist()
note = "fallback_used_due_to_predict_error"
else:
fc = _fallback_forecast(y, horizon).tolist()
note = "fallback_used_timesfm_missing"
return {"model": self.model_id, "horizon": horizon, "freq": freq, "forecast": fc, "note": note}
async def stream(self, request: Dict[str, Any]):
rid = f"chatcmpl-timesfm-{int(time.time())}"
now = int(time.time())
payload = dict(request) if isinstance(request, dict) else {}
try:
result = await self.forecast(payload)
except Exception as e:
content = json.dumps({"error": str(e)}, separators=(",", ":"), ensure_ascii=False)
yield {
"id": rid,
"object": "chat.completion.chunk",
"created": now,
"model": self.model_id,
"choices": [{"index": 0, "delta": {"role": "assistant", "content": content}, "finish_reason": "stop"}],
}
return
content = json.dumps(
{"model": result["model"], "horizon": result["horizon"], "freq": result["freq"],
"forecast": result["forecast"], "note": result.get("note"), "backend": "timesfm"},
separators=(",", ":"), ensure_ascii=False
)
yield {
"id": rid,
"object": "chat.completion.chunk",
"created": now,
"model": self.model_id,
"choices": [{"index": 0, "delta": {"role": "assistant", "content": content}, "finish_reason": "stop"}],
}
class StubImagesBackend(ImagesBackend):
async def generate_b64(self, request: Dict[str, Any]) -> str:
logger.warning("Image generation not supported in TimesFM backend.")
return "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP4BwQACfsD/etCJH0AAAAASUVORK5CYII="