Commit
·
67ec8f1
1
Parent(s):
628cf4f
- timesfs_backend.py +223 -0
timesfs_backend.py
ADDED
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# timesfm_backend.py
|
| 2 |
+
import time, logging
|
| 3 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
try:
|
| 8 |
+
# If you install an official TimesFM package later, we’ll try to use it.
|
| 9 |
+
# (e.g., `pip install timesfm` if/when available)
|
| 10 |
+
import timesfm as tsm # type: ignore
|
| 11 |
+
except Exception:
|
| 12 |
+
tsm = None # graceful fallback
|
| 13 |
+
|
| 14 |
+
try:
|
| 15 |
+
# Optional: pull weights from HF if you want local inference
|
| 16 |
+
# pip install huggingface_hub
|
| 17 |
+
from huggingface_hub import snapshot_download
|
| 18 |
+
except Exception:
|
| 19 |
+
snapshot_download = None # optional
|
| 20 |
+
|
| 21 |
+
from backends_base import ImagesBackend # to mirror structure; not used here
|
| 22 |
+
from config import settings
|
| 23 |
+
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
# --------------------------------------------------------------------------------------
|
| 27 |
+
# Config
|
| 28 |
+
# --------------------------------------------------------------------------------------
|
| 29 |
+
MODEL_ID = getattr(settings, "LlmHFModelID", None) or "google/timesfm-2.5-200m-pytorch"
|
| 30 |
+
DEFAULT_HORIZON = 24 # sensible default if caller omits
|
| 31 |
+
DEFAULT_FREQ = "H" # hour
|
| 32 |
+
ALLOW_GPU = True
|
| 33 |
+
|
| 34 |
+
# --------------------------------------------------------------------------------------
|
| 35 |
+
# Helpers
|
| 36 |
+
# --------------------------------------------------------------------------------------
|
| 37 |
+
def _pick_device() -> str:
|
| 38 |
+
if ALLOW_GPU and torch.cuda.is_available():
|
| 39 |
+
return "cuda"
|
| 40 |
+
return "cpu"
|
| 41 |
+
|
| 42 |
+
def _pick_dtype(device: str) -> torch.dtype:
|
| 43 |
+
# FP16 on CUDA, FP32 on CPU by default (safe and simple)
|
| 44 |
+
if device != "cpu":
|
| 45 |
+
return torch.float16
|
| 46 |
+
return torch.float32
|
| 47 |
+
|
| 48 |
+
def _as_1d_float_tensor(series: List[float], device: str, dtype: torch.dtype) -> torch.Tensor:
|
| 49 |
+
t = torch.tensor(series, dtype=torch.float32) # keep input parse stable
|
| 50 |
+
return t.to(device=device, dtype=dtype)
|
| 51 |
+
|
| 52 |
+
# --------------------------------------------------------------------------------------
|
| 53 |
+
# Fallback forecaster (naive)
|
| 54 |
+
# --------------------------------------------------------------------------------------
|
| 55 |
+
def _naive_forecast(x: torch.Tensor, horizon: int) -> torch.Tensor:
|
| 56 |
+
"""
|
| 57 |
+
Very simple fallback: repeat the last observed value for H steps.
|
| 58 |
+
Ensures the backend returns a forecast even without TimesFM installed.
|
| 59 |
+
"""
|
| 60 |
+
last = x[-1] if x.numel() > 0 else torch.tensor(0.0, device=x.device, dtype=x.dtype)
|
| 61 |
+
return last.repeat(horizon).to(dtype=x.dtype, device=x.device)
|
| 62 |
+
|
| 63 |
+
# --------------------------------------------------------------------------------------
|
| 64 |
+
# Backend
|
| 65 |
+
# --------------------------------------------------------------------------------------
|
| 66 |
+
class TimesFMBackend:
|
| 67 |
+
"""
|
| 68 |
+
Minimal forecasting backend. Input request (dict) shape:
|
| 69 |
+
|
| 70 |
+
{
|
| 71 |
+
"series": [float, ...], # required
|
| 72 |
+
"horizon": 48, # optional (default 24)
|
| 73 |
+
"freq": "H", # optional (default "H")
|
| 74 |
+
"normalize": true, # optional
|
| 75 |
+
"model_id": "google/...", # optional override
|
| 76 |
+
"use_gpu": true/false # optional
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
Output (dict):
|
| 80 |
+
{
|
| 81 |
+
"id": "tsfcst-...",
|
| 82 |
+
"object": "timeseries.forecast",
|
| 83 |
+
"created": 1234567890,
|
| 84 |
+
"model": "<model_id>",
|
| 85 |
+
"horizon": H,
|
| 86 |
+
"freq": "H",
|
| 87 |
+
"forecast": [float, ...],
|
| 88 |
+
"backend": "timesfm",
|
| 89 |
+
"note": "fallback-naive" # only when naive path used
|
| 90 |
+
}
|
| 91 |
+
"""
|
| 92 |
+
|
| 93 |
+
def __init__(self) -> None:
|
| 94 |
+
self._model = None
|
| 95 |
+
self._model_id = MODEL_ID
|
| 96 |
+
self._device = _pick_device()
|
| 97 |
+
self._dtype = _pick_dtype(self._device)
|
| 98 |
+
logger.info(f"[timesfm] init: model_id={self._model_id} device={self._device} dtype={self._dtype}")
|
| 99 |
+
|
| 100 |
+
# ---------- model load (best-effort) ----------
|
| 101 |
+
def _ensure_model(self, model_id: Optional[str] = None) -> None:
|
| 102 |
+
if self._model is not None and (not model_id or model_id == self._model_id):
|
| 103 |
+
return
|
| 104 |
+
|
| 105 |
+
want_id = model_id or self._model_id
|
| 106 |
+
self._model_id = want_id
|
| 107 |
+
|
| 108 |
+
if tsm is None:
|
| 109 |
+
logger.warning("[timesfm] timesfm package not available; using naive fallback")
|
| 110 |
+
self._model = None
|
| 111 |
+
return
|
| 112 |
+
|
| 113 |
+
# If the library provides a from_pretrained, use it; else attempt HF snapshot and custom load.
|
| 114 |
+
model = None
|
| 115 |
+
try:
|
| 116 |
+
if hasattr(tsm, "TimesFM") and hasattr(tsm.TimesFM, "from_pretrained"):
|
| 117 |
+
logger.info(f"[timesfm] loading via TimesFM.from_pretrained('{want_id}')")
|
| 118 |
+
model = tsm.TimesFM.from_pretrained(want_id) # type: ignore[attr-defined]
|
| 119 |
+
else:
|
| 120 |
+
# Manual path: download and let user wire loading code for their saved format
|
| 121 |
+
if snapshot_download is None:
|
| 122 |
+
raise RuntimeError("huggingface_hub not installed; cannot pull weights")
|
| 123 |
+
logger.info(f"[timesfm] snapshot_download('{want_id}')")
|
| 124 |
+
local_dir = snapshot_download(repo_id=want_id)
|
| 125 |
+
# TODO: Replace with actual load for the repo format if needed.
|
| 126 |
+
# Placeholder: try to import a generic torch file if present.
|
| 127 |
+
logger.warning(f"[timesfm] no direct loader available; using naive fallback. weights at {local_dir}")
|
| 128 |
+
model = None
|
| 129 |
+
except Exception as e:
|
| 130 |
+
logger.warning(f"[timesfm] failed to load model '{want_id}': {e}. Falling back to naive.")
|
| 131 |
+
model = None
|
| 132 |
+
|
| 133 |
+
self._model = model
|
| 134 |
+
if model is not None:
|
| 135 |
+
try:
|
| 136 |
+
self._model.to(self._device) # type: ignore[operator]
|
| 137 |
+
except Exception:
|
| 138 |
+
pass
|
| 139 |
+
logger.info("[timesfm] model ready on %s", self._device)
|
| 140 |
+
|
| 141 |
+
# ---------- public API ----------
|
| 142 |
+
async def forecast(self, request: Dict[str, Any]) -> Dict[str, Any]:
|
| 143 |
+
"""
|
| 144 |
+
Async to match your other backends. Returns a single, non-streaming result dict.
|
| 145 |
+
"""
|
| 146 |
+
# parse inputs
|
| 147 |
+
model_id = request.get("model") or request.get("model_id") or self._model_id
|
| 148 |
+
series = request.get("series")
|
| 149 |
+
horizon = int(request.get("horizon") or DEFAULT_HORIZON)
|
| 150 |
+
freq = request.get("freq") or DEFAULT_FREQ
|
| 151 |
+
normalize = bool(request.get("normalize") or False)
|
| 152 |
+
use_gpu = request.get("use_gpu")
|
| 153 |
+
if use_gpu is not None:
|
| 154 |
+
self._device = "cuda" if (use_gpu and torch.cuda.is_available()) else "cpu"
|
| 155 |
+
self._dtype = _pick_dtype(self._device)
|
| 156 |
+
|
| 157 |
+
if not isinstance(series, (list, tuple)) or not all(isinstance(v, (int, float)) for v in series):
|
| 158 |
+
raise ValueError("request['series'] must be a list of numbers")
|
| 159 |
+
|
| 160 |
+
# ensure model (or fallback)
|
| 161 |
+
self._ensure_model(model_id)
|
| 162 |
+
|
| 163 |
+
# tensorize
|
| 164 |
+
x = _as_1d_float_tensor(list(series), self._device, self._dtype)
|
| 165 |
+
|
| 166 |
+
# optional normalization (z-score)
|
| 167 |
+
mu: Optional[torch.Tensor] = None
|
| 168 |
+
sigma: Optional[torch.Tensor] = None
|
| 169 |
+
if normalize and x.numel() > 1:
|
| 170 |
+
mu = x.mean()
|
| 171 |
+
sigma = x.std(unbiased=False).clamp_min(1e-6)
|
| 172 |
+
x_norm = (x - mu) / sigma
|
| 173 |
+
else:
|
| 174 |
+
x_norm = x
|
| 175 |
+
|
| 176 |
+
# run forecast
|
| 177 |
+
note = None
|
| 178 |
+
if self._model is None:
|
| 179 |
+
y_hat = _naive_forecast(x_norm, horizon)
|
| 180 |
+
note = "fallback-naive"
|
| 181 |
+
else:
|
| 182 |
+
try:
|
| 183 |
+
# Preferred path if the library supports it:
|
| 184 |
+
if hasattr(self._model, "forecast"):
|
| 185 |
+
y_hat = self._model.forecast(x_norm.unsqueeze(0), horizon=horizon) # type: ignore[attr-defined]
|
| 186 |
+
# Shape handling: [B, H] -> 1D
|
| 187 |
+
if isinstance(y_hat, (list, tuple)):
|
| 188 |
+
y_hat = torch.tensor(y_hat, device=x_norm.device, dtype=x_norm.dtype)
|
| 189 |
+
if isinstance(y_hat, torch.Tensor) and y_hat.dim() == 2:
|
| 190 |
+
y_hat = y_hat[0]
|
| 191 |
+
elif not isinstance(y_hat, torch.Tensor):
|
| 192 |
+
y_hat = torch.tensor(y_hat, device=x_norm.device, dtype=x_norm.dtype)
|
| 193 |
+
else:
|
| 194 |
+
# If no forecast method, fallback
|
| 195 |
+
y_hat = _naive_forecast(x_norm, horizon)
|
| 196 |
+
note = "fallback-naive"
|
| 197 |
+
except Exception as e:
|
| 198 |
+
logger.warning(f"[timesfm] forecast failed on model path: {e}. Using naive fallback.")
|
| 199 |
+
y_hat = _naive_forecast(x_norm, horizon)
|
| 200 |
+
note = "fallback-naive"
|
| 201 |
+
|
| 202 |
+
# denormalize
|
| 203 |
+
if normalize and mu is not None and sigma is not None:
|
| 204 |
+
y_hat = y_hat * sigma + mu
|
| 205 |
+
|
| 206 |
+
# move to cpu list
|
| 207 |
+
forecast = y_hat.detach().float().cpu().tolist()
|
| 208 |
+
|
| 209 |
+
rid = f"tsfcst-{int(time.time())}"
|
| 210 |
+
now = int(time.time())
|
| 211 |
+
resp = {
|
| 212 |
+
"id": rid,
|
| 213 |
+
"object": "timeseries.forecast",
|
| 214 |
+
"created": now,
|
| 215 |
+
"model": self._model_id,
|
| 216 |
+
"horizon": horizon,
|
| 217 |
+
"freq": freq,
|
| 218 |
+
"forecast": forecast,
|
| 219 |
+
"backend": "timesfm",
|
| 220 |
+
}
|
| 221 |
+
if note:
|
| 222 |
+
resp["note"] = note
|
| 223 |
+
return resp
|