File size: 4,835 Bytes
41b56e7
 
 
7e1884b
41b56e7
 
 
 
 
 
7e1884b
41b56e7
 
 
 
 
 
 
 
 
 
a11648f
 
41b56e7
 
a11648f
41b56e7
a11648f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41b56e7
 
 
 
 
 
 
 
 
 
 
a11648f
 
 
 
 
 
 
 
41b56e7
 
 
a11648f
 
41b56e7
7e1884b
41b56e7
7e1884b
41b56e7
7e1884b
41b56e7
 
 
 
 
 
 
 
7e1884b
41b56e7
 
7e1884b
 
41b56e7
 
 
 
 
 
7e1884b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41b56e7
7e1884b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import gradio as gr
import torch
import torch.nn as nn
from transformers import XLNetTokenizer, XLNetModel
import numpy as np

class TextEncoder(nn.Module):
    def __init__(self):
        super().__init__()
        self.transformer = XLNetModel.from_pretrained("xlnet-base-cased")
    
    def forward(self, input_ids, token_type_ids, attention_mask):
        hidden = self.transformer(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask).last_hidden_state
        context = hidden.mean(dim=1)
        context = context.view(*context.shape, 1, 1)
        return context

class Generator(nn.Module):
    def __init__(self, nz=100, ngf=64, nt=768, nc=3):
        super().__init__()
        self.layer1 = nn.Sequential(
            nn.ConvTranspose2d(nz+nt, ngf*8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf*8)
        )
        self.layer2 = nn.Sequential(
            nn.Conv2d(ngf*8, ngf*2, 1, 1),
            nn.Dropout2d(inplace=True),
            nn.BatchNorm2d(ngf*2),
            nn.ReLU(True)
        )
        self.layer3 = nn.Sequential(
            nn.Conv2d(ngf*2, ngf*2, 3, 1, 1),
            nn.Dropout2d(inplace=True),
            nn.BatchNorm2d(ngf*2),
            nn.ReLU(True)
        )
        self.layer4 = nn.Sequential(
            nn.Conv2d(ngf*2, ngf*8, 3, 1, 1),
            nn.Dropout2d(inplace=True),
            nn.BatchNorm2d(ngf*8),
            nn.ReLU(True)
        )
        self.layer5 = nn.Sequential(
            nn.ConvTranspose2d(ngf*8, ngf*4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf*4),
            nn.ReLU(True)
        )
        self.layer6 = nn.Sequential(
            nn.Conv2d(ngf*4, ngf, 1, 1),
            nn.Dropout2d(inplace=True),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True)
        )
        self.layer7 = nn.Sequential(
            nn.Conv2d(ngf, ngf, 3, 1, 1),
            nn.Dropout2d(inplace=True),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True)
        )
        self.layer8 = nn.Sequential(
            nn.Conv2d(ngf, ngf*4, 3, 1, 1),
            nn.Dropout2d(inplace=True),
            nn.BatchNorm2d(ngf*4),
            nn.ReLU(True)
        )
        self.layer9 = nn.Sequential(
            nn.ConvTranspose2d(ngf*4, ngf*2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf*2),
            nn.ReLU(True)
        )
        self.layer10 = nn.Sequential(
            nn.ConvTranspose2d(ngf*2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True)
        )
        self.layer11 = nn.Sequential(
            nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
            nn.Tanh()
        )

    def forward(self, noise, encoded_text):
        x = torch.cat([noise, encoded_text], dim=1)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.layer5(x)
        x = self.layer6(x)
        x = self.layer7(x)
        x = self.layer8(x)
        x = self.layer9(x)
        x = self.layer10(x)
        x = self.layer11(x)
        return x



# Load the model and tokenizer
model_path = "checkpoint.pth"  # Adjust as necessary
tokenizer = XLNetTokenizer.from_pretrained('xlnet-base-cased')
text_encoder = TextEncoder()
model = Generator()

model_state_dict = torch.load(model_path, map_location="cpu")
generator = model_state_dict['models']['generator']
model.load_state_dict(generator)

text_encoder.to("cpu")
model.to("cpu")
model.eval()

def generate_image(enc_text):
    noise = torch.randn((1, 100, 1, 1), device="cpu")
    with torch.no_grad():
        generated_image = model(noise, enc_text).detach().squeeze().cpu()
    
    gen_image_np = generated_image.numpy()
    gen_image_np = np.transpose(gen_image_np, (1, 2, 0))  # Change from CHW to HWC
    gen_image_np = (gen_image_np - gen_image_np.min()) / (gen_image_np.max() - gen_image_np.min())  # Normalize to [0, 1]
    gen_image_np = (gen_image_np * 255).astype(np.uint8)
    return gen_image_np

def encode_text(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    encoded_text = text_encoder(**inputs)
    return encoded_text

def on_generate_button_click(text_input):
    if text_input:
        encoded_text = encode_text(text_input)
        generated_image = generate_image(encoded_text)
        return generated_image
    return None

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## Flower Image Generator")
    text_input = gr.Textbox(label="Enter a flower-related description", value="A beautiful red rose")
    generate_button = gr.Button("Generate Image")
    output_image = gr.Image(type="numpy")  # Ensure output type is correct

    generate_button.click(on_generate_button_click, inputs=text_input, outputs=output_image)

# Launch the Gradio app
demo.launch()