Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,66 +3,87 @@ matplotlib.use("Agg")
|
|
| 3 |
|
| 4 |
from PIL import Image
|
| 5 |
import pandas as pd, plotly.express as px, gradio as gr
|
| 6 |
-
|
| 7 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 8 |
from wfgy_sdk import get_engine
|
| 9 |
from wfgy_sdk.evaluator import compare_logits, plot_histogram
|
| 10 |
|
|
|
|
| 11 |
tok = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2")
|
| 12 |
mdl = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2")
|
| 13 |
eng = get_engine()
|
| 14 |
|
| 15 |
-
history
|
|
|
|
| 16 |
|
| 17 |
-
paper
|
|
|
|
| 18 |
"Benchmark": ["MMLU","GSM8K","BBH","MathBench","TruthfulQA",
|
| 19 |
"XNLI","MLQA","LongBench","VQAv2","OK-VQA"],
|
| 20 |
-
"Baseline": [61,78,79.3,72.2,62.4,59.5,78.1,51.4,69.1,65.7],
|
| 21 |
"WFGY": [89.8,98.7,100.7,87.4,90.4,77.3,106.6,69.6,86.6,86.8]
|
| 22 |
})
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
def run(prompt):
|
| 25 |
-
|
| 26 |
-
if not
|
| 27 |
return "", "", "", None, plot_history()
|
| 28 |
-
ids
|
| 29 |
-
|
| 30 |
-
G
|
| 31 |
-
I
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
| 35 |
history["step"].append(step)
|
| 36 |
history["var"].append(m["var_drop"]*100)
|
| 37 |
history["kl"].append(m["kl"])
|
| 38 |
-
|
| 39 |
-
|
|
|
|
| 40 |
img = Image.open(buf)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
def plot_history():
|
| 47 |
-
if not history["step"]:
|
| 48 |
-
return px.line(title="history").update_layout(height=250)
|
| 49 |
df = pd.DataFrame(history)
|
| 50 |
return px.line(df, x="step", y=["var","kl"],
|
| 51 |
-
labels={"value":"metric","step":"call"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
with gr.Blocks(title="WFGY variance gate") as demo:
|
| 54 |
gr.Markdown("# 🧠 WFGY simulation demo")
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
if __name__ == "__main__":
|
| 68 |
demo.queue().launch()
|
|
|
|
| 3 |
|
| 4 |
from PIL import Image
|
| 5 |
import pandas as pd, plotly.express as px, gradio as gr
|
|
|
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
from wfgy_sdk import get_engine
|
| 8 |
from wfgy_sdk.evaluator import compare_logits, plot_histogram
|
| 9 |
|
| 10 |
+
# tiny model for demo
|
| 11 |
tok = AutoTokenizer.from_pretrained("sshleifer/tiny-gpt2")
|
| 12 |
mdl = AutoModelForCausalLM.from_pretrained("sshleifer/tiny-gpt2")
|
| 13 |
eng = get_engine()
|
| 14 |
|
| 15 |
+
# runtime history (start with a dummy zero so the plot is never empty)
|
| 16 |
+
history = {"step": [0], "var": [0.0], "kl": [0.0]}
|
| 17 |
|
| 18 |
+
# paper benchmark absolute numbers
|
| 19 |
+
paper_df = pd.DataFrame({
|
| 20 |
"Benchmark": ["MMLU","GSM8K","BBH","MathBench","TruthfulQA",
|
| 21 |
"XNLI","MLQA","LongBench","VQAv2","OK-VQA"],
|
| 22 |
+
"Baseline": [61.0,78.0,79.3,72.2,62.4,59.5,78.1,51.4,69.1,65.7],
|
| 23 |
"WFGY": [89.8,98.7,100.7,87.4,90.4,77.3,106.6,69.6,86.6,86.8]
|
| 24 |
})
|
| 25 |
+
paper_df["Abs_gain"] = (paper_df["WFGY"] - paper_df["Baseline"]).round(1)
|
| 26 |
+
paper_df["Rel_gain%"] = ((paper_df["Abs_gain"] / paper_df["Baseline"])*100).round(0)
|
| 27 |
|
| 28 |
+
def run(prompt: str):
|
| 29 |
+
prompt = prompt.strip()
|
| 30 |
+
if not prompt:
|
| 31 |
return "", "", "", None, plot_history()
|
| 32 |
+
ids = tok(prompt, return_tensors="pt").input_ids
|
| 33 |
+
rawL = mdl(ids).logits[0,-1].detach().cpu().numpy()
|
| 34 |
+
G = np.random.randn(256).astype(np.float32)
|
| 35 |
+
I = G + np.random.normal(scale=0.05, size=256).astype(np.float32)
|
| 36 |
+
modL = eng.run(I, G, rawL)
|
| 37 |
+
|
| 38 |
+
m = compare_logits(rawL, modL)
|
| 39 |
+
step = len(history["step"])
|
| 40 |
history["step"].append(step)
|
| 41 |
history["var"].append(m["var_drop"]*100)
|
| 42 |
history["kl"].append(m["kl"])
|
| 43 |
+
|
| 44 |
+
fig = plot_histogram(rawL, modL)
|
| 45 |
+
buf = io.BytesIO(); fig.savefig(buf, format="png"); buf.seek(0)
|
| 46 |
img = Image.open(buf)
|
| 47 |
+
|
| 48 |
+
headline = f"▼ var {m['var_drop']*100:4.1f}% | KL {m['kl']:.3f}"
|
| 49 |
+
note = f"*top-1 token {'changed' if not m['top1'] else 'kept'}*"
|
| 50 |
+
|
| 51 |
+
raw_text = prompt + tok.decode(int(rawL.argmax()))
|
| 52 |
+
mod_text = prompt + tok.decode(int(modL.argmax()))
|
| 53 |
+
|
| 54 |
+
return raw_text, mod_text, headline + " " + note, img, plot_history()
|
| 55 |
|
| 56 |
def plot_history():
|
|
|
|
|
|
|
| 57 |
df = pd.DataFrame(history)
|
| 58 |
return px.line(df, x="step", y=["var","kl"],
|
| 59 |
+
labels={"value":"metric","step":"call"},
|
| 60 |
+
title="history (var% ↓ & KL)").update_layout(height=260)
|
| 61 |
+
|
| 62 |
+
def clear_hist():
|
| 63 |
+
history["step"][:] = [0]
|
| 64 |
+
history["var"][:] = [0.0]
|
| 65 |
+
history["kl"][:] = [0.0]
|
| 66 |
+
return plot_history()
|
| 67 |
|
| 68 |
with gr.Blocks(title="WFGY variance gate") as demo:
|
| 69 |
gr.Markdown("# 🧠 WFGY simulation demo")
|
| 70 |
+
prompt = gr.Textbox(label="Prompt", value="Explain Schrödinger's cat")
|
| 71 |
+
run_btn = gr.Button("🚀 Run")
|
| 72 |
+
with gr.Row():
|
| 73 |
+
raw_box = gr.Textbox(label="Raw GPT-2")
|
| 74 |
+
mod_box = gr.Textbox(label="After WFGY")
|
| 75 |
+
headline = gr.Markdown()
|
| 76 |
+
hist_img = gr.Image(type="pil", label="Logit histogram")
|
| 77 |
+
hist_plot = gr.Plot(label="History")
|
| 78 |
+
clr_btn = gr.Button("Clear history")
|
| 79 |
+
|
| 80 |
+
with gr.Accordion("Paper benchmarks", open=False):
|
| 81 |
+
gr.DataFrame(paper_df, interactive=False, wrap=True)
|
| 82 |
+
|
| 83 |
+
gr.Markdown("---\n⭐ **10 000 GitHub stars before 2025-08-01 unlock WFGY 2.0**")
|
| 84 |
+
|
| 85 |
+
run_btn.click(run, prompt, [raw_box, mod_box, headline, hist_img, hist_plot])
|
| 86 |
+
clr_btn.click(clear_hist, None, hist_plot)
|
| 87 |
|
| 88 |
if __name__ == "__main__":
|
| 89 |
demo.queue().launch()
|