import dotenv import gradio as gr from huggingface_hub import InferenceClient def respond_chat_completion( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages_in = [ { "role": "system", "content": system_message } ] for val in history: if val[0]: messages_in.append( { "role": "user", "content": val[0] } ) if val[1]: messages_in.append( { "role": "assistant", "content": val[1] } ) messages_in.append( { "role": "user", "content": message } ) dotenv.load_dotenv(dotenv.find_dotenv()) # Load env. variable HF_TOKEN client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") messages_out = client.chat_completion( messages_in, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p ) response = "" for message in messages_out: token = message.choices[0].delta.content response += token yield response chatbot = gr.ChatInterface( respond_chat_completion, type='messages', additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": chatbot.launch()