PD03 commited on
Commit
fc95108
Β·
verified Β·
1 Parent(s): 89ba0fe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +356 -604
app.py CHANGED
@@ -3,9 +3,9 @@ import numpy as np
3
  import pandas as pd
4
  import plotly.express as px
5
  import plotly.graph_objects as go
6
- from plotly.subplots import make_subplots
7
  import shap
8
  import matplotlib.pyplot as plt
 
9
  from datetime import datetime, timedelta
10
  from sklearn.model_selection import train_test_split
11
  from sklearn.compose import ColumnTransformer
@@ -15,99 +15,74 @@ from sklearn.ensemble import RandomForestRegressor
15
  from sklearn.linear_model import LinearRegression
16
  from sklearn.metrics import r2_score, mean_absolute_error
17
 
18
- # Enhanced page config
19
- st.set_page_config(
20
- page_title="Profitability Intelligence Suite",
21
- page_icon="πŸ“Š",
22
- layout="wide",
23
- initial_sidebar_state="collapsed"
24
- )
25
 
26
- # Custom CSS for premium look
27
  st.markdown("""
28
  <style>
29
  .main-header {
30
- font-size: 2.8rem;
31
  font-weight: 700;
32
  color: #1f77b4;
33
- text-align: center;
34
  margin-bottom: 0.5rem;
35
- text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
36
  }
37
  .sub-header {
38
- font-size: 1.2rem;
39
  color: #666;
40
- text-align: center;
41
  margin-bottom: 2rem;
42
  }
43
- .metric-container {
44
  background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
45
  padding: 1.5rem;
46
- border-radius: 15px;
47
- box-shadow: 0 8px 16px rgba(0,0,0,0.1);
48
  color: white;
49
- text-align: center;
50
- }
51
- .insight-box {
52
- background: #f8f9fa;
53
- border-left: 5px solid #1f77b4;
54
- padding: 1.5rem;
55
  margin: 1rem 0;
56
- border-radius: 8px;
57
- box-shadow: 0 4px 8px rgba(0,0,0,0.05);
58
  }
59
- .recommendation-card {
60
  background: white;
61
- border: 2px solid #e9ecef;
62
- border-radius: 12px;
63
  padding: 1.5rem;
64
- margin: 1rem 0;
65
- box-shadow: 0 4px 12px rgba(0,0,0,0.08);
66
- transition: transform 0.2s;
67
- }
68
- .recommendation-card:hover {
69
- transform: translateY(-5px);
70
- box-shadow: 0 8px 20px rgba(0,0,0,0.12);
71
- }
72
- .positive-impact {
73
- color: #28a745;
74
- font-weight: 700;
75
- font-size: 1.5rem;
76
- }
77
- .negative-impact {
78
- color: #dc3545;
79
- font-weight: 700;
80
- font-size: 1.5rem;
81
  }
82
- .stTabs [data-baseweb="tab-list"] {
83
- gap: 2rem;
 
 
 
 
84
  }
85
- .stTabs [data-baseweb="tab"] {
86
- height: 3rem;
87
- font-size: 1.1rem;
88
- font-weight: 600;
 
 
89
  }
90
  </style>
91
  """, unsafe_allow_html=True)
92
 
93
  # -----------------------------
94
- # Data Generation (Same as original)
95
  # -----------------------------
96
  @st.cache_data(show_spinner=False)
97
- def generate_synthetic_data(days=60, seed=42, rows_per_day=600):
98
  rng = np.random.default_rng(seed)
99
  start_date = datetime.today().date() - timedelta(days=days)
100
  dates = pd.date_range(start_date, periods=days, freq="D")
 
101
  products = ["Premium Widget", "Standard Widget", "Economy Widget", "Deluxe Widget"]
102
- regions = ["Americas", "EMEA", "Asia Pacific"]
103
  channels = ["Direct Sales", "Distribution Partners", "E-Commerce"]
104
 
105
  base_price = {"Premium Widget": 120, "Standard Widget": 135, "Economy Widget": 110, "Deluxe Widget": 150}
106
- base_cost = {"Premium Widget": 70, "Standard Widget": 88, "Economy Widget": 60, "Deluxe Widget": 95}
107
- region_price_bump = {"Americas": 1.00, "EMEA": 1.03, "Asia Pacific": 0.97}
108
- region_cost_bump = {"Americas": 1.00, "EMEA": 1.02, "Asia Pacific": 1.01}
 
 
109
  channel_discount_mean = {"Direct Sales": 0.06, "Distribution Partners": 0.12, "E-Commerce": 0.04}
110
- channel_discount_std = {"Direct Sales": 0.02, "Distribution Partners": 0.03, "E-Commerce": 0.02}
111
 
112
  seg_epsilon = {}
113
  for p in products:
@@ -128,17 +103,16 @@ def generate_synthetic_data(days=60, seed=42, rows_per_day=600):
128
 
129
  n = rows_per_day
130
  prod = rng.choice(products, size=n, p=[0.35, 0.3, 0.2, 0.15])
131
- reg = rng.choice(regions, size=n, p=[0.4, 0.35, 0.25])
132
- ch = rng.choice(channels, size=n, p=[0.45, 0.35, 0.20])
133
 
134
  base_p = np.array([base_price[x] for x in prod]) * np.array([region_price_bump[x] for x in reg])
135
- base_c = np.array([base_cost[x] for x in prod]) * np.array([region_cost_bump[x] for x in reg])
136
 
137
  discount = np.clip(
138
  np.array([channel_discount_mean[x] for x in ch]) +
139
  rng.normal(0, [channel_discount_std[x] for x in ch]), 0, 0.45
140
  )
141
-
142
  list_price = rng.normal(base_p, 5)
143
  net_price = np.clip(list_price * (1 - discount), 20, None)
144
  unit_cost = np.clip(rng.normal(base_c, 4), 10, None)
@@ -149,92 +123,79 @@ def generate_synthetic_data(days=60, seed=42, rows_per_day=600):
149
  qty = np.maximum(1, rng.poisson(8 * dow_mult * macro * qty_mu))
150
 
151
  revenue = net_price * qty
152
- cogs = unit_cost * qty
153
- gm_val = revenue - cogs
154
- gm_pct = np.where(revenue > 0, gm_val / revenue, 0.0)
155
 
156
  for i in range(n):
157
  records.append({
158
- "date": d,
159
- "product": prod[i],
160
- "region": reg[i],
161
- "channel": ch[i],
162
- "list_price": float(list_price[i]),
163
- "discount_pct": float(discount[i]),
164
- "net_price": float(net_price[i]),
165
- "unit_cost": float(unit_cost[i]),
166
- "qty": int(qty[i]),
167
- "revenue": float(revenue[i]),
168
- "cogs": float(cogs[i]),
169
- "gm_value": float(gm_val[i]),
170
- "gm_pct": float(gm_pct[i]),
171
- "dow": dow
172
  })
173
-
174
- df = pd.DataFrame(records)
175
- return df
176
 
177
  def build_features(df: pd.DataFrame):
178
  feats_num = ["net_price", "unit_cost", "qty", "discount_pct", "list_price", "dow"]
179
  feats_cat = ["product", "region", "channel"]
 
180
  df = df.sort_values("date").copy()
181
  seg = ["product", "region", "channel"]
182
  df["price_per_unit"] = df["net_price"]
183
- df["cost_per_unit"] = df["unit_cost"]
 
184
  df["roll7_qty"] = df.groupby(seg)["qty"].transform(lambda s: s.rolling(7, min_periods=1).median())
185
  df["roll7_price"] = df.groupby(seg)["price_per_unit"].transform(lambda s: s.rolling(7, min_periods=1).median())
186
- df["roll7_cost"] = df.groupby(seg)["cost_per_unit"].transform(lambda s: s.rolling(7, min_periods=1).median())
 
187
  feats_num += ["price_per_unit", "cost_per_unit", "roll7_qty", "roll7_price", "roll7_cost"]
188
- target = "gm_pct"
189
- return df, feats_num, feats_cat, target
190
 
191
  @st.cache_resource(show_spinner=False)
192
- def train_model(_df, feats_num, feats_cat, target):
193
- X = _df[feats_num + feats_cat]
194
- y = _df[target]
 
195
  pre = ColumnTransformer(
196
  transformers=[
197
  ("cat", OneHotEncoder(handle_unknown="ignore"), feats_cat),
198
  ("num", "passthrough", feats_num),
199
  ]
200
  )
201
- model = RandomForestRegressor(n_estimators=250, max_depth=None, random_state=42, n_jobs=-1, min_samples_leaf=3)
202
  pipe = Pipeline([("pre", pre), ("rf", model)])
 
203
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, shuffle=False)
204
  pipe.fit(X_train, y_train)
205
  pred = pipe.predict(X_test)
206
- r2 = r2_score(y_test, pred)
207
- mae = mean_absolute_error(y_test, pred)
208
- return pipe, {"r2": r2, "mae": mae}, X_test
209
 
210
  @st.cache_resource(show_spinner=False)
211
- def compute_shap(_pipe, _X_sample, feats_num, feats_cat, shap_sample=800):
212
- np.random.seed(42)
213
- preprocessor = _pipe.named_steps["pre"]
214
  rf = _pipe.named_steps["rf"]
215
- feature_names = list(preprocessor.named_transformers_["cat"].get_feature_names_out(feats_cat)) + feats_num
216
-
217
- # Convert to DataFrame if needed
218
- if hasattr(_X_sample, 'iloc'):
219
- X_sample = _X_sample.copy()
220
- else:
221
- X_sample = pd.DataFrame(_X_sample)
222
 
223
  if len(X_sample) > shap_sample:
224
  sample_idx = np.random.choice(len(X_sample), size=shap_sample, replace=False)
225
  X_sample = X_sample.iloc[sample_idx]
226
 
227
- X_t = preprocessor.transform(X_sample)
228
  try:
229
  X_t = X_t.toarray()
230
- except Exception:
231
  pass
232
 
233
  explainer = shap.TreeExplainer(rf)
234
  shap_values = explainer.shap_values(X_t)
235
  shap_df = pd.DataFrame(shap_values, columns=feature_names)
236
-
237
- return shap_df, X_sample.reset_index(drop=True), feature_names
 
238
 
239
  def estimate_segment_elasticity(df: pd.DataFrame, product, region, channel):
240
  seg_df = df[(df["product"]==product)&(df["region"]==region)&(df["channel"]==channel)]
@@ -245,559 +206,350 @@ def estimate_segment_elasticity(df: pd.DataFrame, product, region, channel):
245
  lin = LinearRegression().fit(x, y)
246
  return float(lin.coef_[0]), True
247
 
248
- def simulate_pricing_action(segment_df: pd.DataFrame, elasticity, discount_reduction_pct):
249
  if segment_df.empty:
250
  return None
251
  base = segment_df.iloc[-1]
252
- p0 = base["net_price"]
253
- c0 = base["unit_cost"]
254
- q0 = base["qty"]
255
- d0 = base["discount_pct"]
256
 
257
- new_discount = np.clip(d0 - (discount_reduction_pct/100), 0.0, 0.45)
258
  p1 = max(0.01, base["list_price"] * (1 - new_discount))
259
- c1 = c0
 
260
 
261
- if p0 <= 0:
262
- q1 = q0
263
- else:
264
- q1 = max(0.0, q0 * (p1 / p0) ** elasticity)
265
-
266
- rev0 = p0 * q0
267
- cogs0 = c0 * q0
268
- rev1 = p1 * q1
269
- cogs1 = c1 * q1
270
-
271
- gm_delta_value = (rev1 - cogs1) - (rev0 - cogs0)
272
- gm0_pct = (rev0 - cogs0)/rev0 if rev0>0 else 0.0
273
- gm1_pct = (rev1 - cogs1)/rev1 if rev1>0 else 0.0
274
 
275
  return {
276
- "baseline_price": p0, "new_price": p1,
277
- "baseline_cost": c0, "new_cost": c1,
278
- "baseline_qty": q0, "new_qty": q1,
279
- "baseline_discount": d0*100, "new_discount": new_discount*100,
280
- "gm_delta_value": gm_delta_value,
281
- "gm0_pct": gm0_pct, "gm1_pct": gm1_pct,
282
- "revenue_delta": rev1 - rev0
283
  }
284
 
285
  # -----------------------------
286
- # Main App
287
  # -----------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
288
 
289
- # Header
290
- st.markdown('<h1 class="main-header">🎯 Profitability Intelligence Suite</h1>', unsafe_allow_html=True)
291
- st.markdown('<p class="sub-header">AI-Powered Margin Analysis & Strategic Recommendations</p>', unsafe_allow_html=True)
292
-
293
- # Generate data
294
- with st.spinner("πŸ”„ Loading business data..."):
295
- df = generate_synthetic_data(days=60, seed=42, rows_per_day=600)
296
- df_feat, feats_num, feats_cat, target = build_features(df)
297
-
298
- # Calculate KPIs
299
- daily = df.groupby("date").agg(
300
- revenue=("revenue","sum"),
301
- cogs=("cogs","sum"),
302
- gm_value=("gm_value","sum")
303
- ).reset_index()
304
- daily["gm_pct"] = np.where(daily["revenue"]>0, daily["gm_value"]/daily["revenue"], 0.0)
305
 
 
 
 
 
 
 
 
306
  today_row = daily.iloc[-1]
307
  yesterday_row = daily.iloc[-2] if len(daily) > 1 else today_row
308
- week_ago_row = daily.iloc[-8] if len(daily) > 7 else today_row
309
  roll7 = daily["gm_pct"].tail(7).mean()
310
-
311
- # Executive Dashboard Section
312
- st.markdown("### πŸ“Š Executive Performance Dashboard")
313
 
314
  col1, col2, col3, col4 = st.columns(4)
315
 
316
  with col1:
317
- delta_gm = (today_row["gm_pct"] - yesterday_row["gm_pct"]) * 100
318
- st.metric(
319
- label="Gross Margin %",
320
- value=f"{today_row['gm_pct']*100:.1f}%",
321
- delta=f"{delta_gm:+.2f}pp vs yesterday",
322
- delta_color="normal"
323
- )
324
 
325
  with col2:
326
- delta_rev = ((today_row["revenue"] - yesterday_row["revenue"]) / yesterday_row["revenue"] * 100) if yesterday_row["revenue"] > 0 else 0
327
- st.metric(
328
- label="Revenue (Today)",
329
- value=f"${today_row['revenue']/1e6:.2f}M",
330
- delta=f"{delta_rev:+.1f}% DoD",
331
- delta_color="normal"
332
- )
333
 
334
  with col3:
335
- st.metric(
336
- label="Gross Margin $ (Today)",
337
- value=f"${today_row['gm_value']/1e6:.2f}M",
338
- delta=f"${(today_row['gm_value'] - yesterday_row['gm_value'])/1e6:+.2f}M",
339
- delta_color="normal"
340
- )
341
 
342
  with col4:
343
- avg_gm_vs_week = (today_row["gm_pct"] - week_ago_row["gm_pct"]) * 100
344
- st.metric(
345
- label="7-Day Avg GM%",
346
- value=f"{roll7*100:.1f}%",
347
- delta=f"{avg_gm_vs_week:+.2f}pp WoW",
348
- delta_color="normal"
349
- )
350
-
351
- # Trend visualization
352
- st.markdown("#### πŸ“ˆ Performance Trend Analysis")
353
-
354
- fig_trends = make_subplots(
355
- rows=1, cols=2,
356
- subplot_titles=("Gross Margin % Trend", "Revenue & Margin $ Trend"),
357
- specs=[[{"secondary_y": False}, {"secondary_y": True}]]
358
- )
359
-
360
- # GM% trend
361
- fig_trends.add_trace(
362
- go.Scatter(
363
- x=daily["date"],
364
- y=daily["gm_pct"]*100,
365
- name="GM%",
366
- line=dict(color="#1f77b4", width=3),
367
- fill='tozeroy',
368
- fillcolor="rgba(31, 119, 180, 0.1)"
369
- ),
370
- row=1, col=1
371
- )
372
-
373
- # Revenue and GM$ trend
374
- fig_trends.add_trace(
375
- go.Scatter(
376
- x=daily["date"],
377
- y=daily["revenue"]/1e6,
378
- name="Revenue",
379
- line=dict(color="#2ca02c", width=2)
380
- ),
381
- row=1, col=2
382
- )
383
-
384
- fig_trends.add_trace(
385
- go.Scatter(
386
- x=daily["date"],
387
- y=daily["gm_value"]/1e6,
388
- name="GM Value",
389
- line=dict(color="#ff7f0e", width=2, dash="dash")
390
- ),
391
- row=1, col=2, secondary_y=True
392
- )
393
-
394
- fig_trends.update_xaxes(title_text="Date", row=1, col=1)
395
- fig_trends.update_xaxes(title_text="Date", row=1, col=2)
396
- fig_trends.update_yaxes(title_text="Gross Margin %", row=1, col=1)
397
- fig_trends.update_yaxes(title_text="Revenue ($M)", row=1, col=2)
398
- fig_trends.update_yaxes(title_text="GM Value ($M)", row=1, col=2, secondary_y=True)
399
-
400
- fig_trends.update_layout(height=400, showlegend=True, hovermode="x unified")
401
- st.plotly_chart(fig_trends, use_container_width=True)
402
-
403
- st.markdown("---")
404
-
405
- # Train model
406
- with st.spinner("πŸ€– Training AI model..."):
407
- pipe, metrics, X_test = train_model(df_feat, feats_num, feats_cat, target)
408
-
409
- # Tabs for different sections
410
- tab1, tab2, tab3 = st.tabs(["πŸ” Key Drivers Analysis", "🎯 Strategic Recommendations", "πŸ§ͺ What-If Simulator"])
411
-
412
- with tab1:
413
- st.markdown("### Understanding What Drives Your Profitability")
414
- st.markdown("""
415
  <div class="insight-box">
416
- <b>πŸŽ“ Business Insight:</b> This analysis reveals which business factors have the strongest impact on gross margin.
417
- Understanding these drivers helps prioritize strategic initiatives and operational improvements.
 
418
  </div>
419
  """, unsafe_allow_html=True)
420
 
421
- # Compute SHAP
422
- with st.spinner("πŸ”¬ Analyzing profitability drivers..."):
423
- shap_df, X_test_sample, feature_names = compute_shap(pipe, X_test, feats_num, feats_cat, shap_sample=800)
424
-
425
- # Calculate mean absolute SHAP
426
- mean_abs = shap_df.abs().mean().sort_values(ascending=False)
427
-
428
- # Map technical names to business names
429
- business_name_map = {
430
- "discount_pct": "Discount Level",
431
- "unit_cost": "Unit Cost",
432
- "net_price": "Net Selling Price",
433
- "list_price": "List Price",
434
- "qty": "Order Quantity",
435
- "price_per_unit": "Price per Unit",
436
- "cost_per_unit": "Cost per Unit",
437
- "roll7_qty": "7-Day Avg Quantity",
438
- "roll7_price": "7-Day Avg Price",
439
- "roll7_cost": "7-Day Avg Cost",
440
- "dow": "Day of Week"
441
- }
442
-
443
- # Get top drivers with business names
444
- top_drivers = []
445
- for feat, val in mean_abs.head(10).items():
446
- bus_name = feat
447
- for key, name in business_name_map.items():
448
- if key in feat.lower():
449
- bus_name = name
450
- break
451
- # Check for product/region/channel encoding
452
- if feat.startswith("cat__"):
453
- parts = feat.replace("cat__", "").split("_")
454
- if "product" in feat.lower():
455
- bus_name = f"Product: {parts[-1] if parts else feat}"
456
- elif "region" in feat.lower():
457
- bus_name = f"Region: {parts[-1] if parts else feat}"
458
- elif "channel" in feat.lower():
459
- bus_name = f"Channel: {parts[-1] if parts else feat}"
460
- top_drivers.append({"Driver": bus_name, "Impact Score": val})
461
-
462
- drivers_df = pd.DataFrame(top_drivers)
463
-
464
- col_a, col_b = st.columns([1, 1])
465
-
466
- with col_a:
467
- st.markdown("#### Top 10 Profitability Drivers")
468
-
469
- # Create horizontal bar chart
470
- fig_drivers = go.Figure()
471
- fig_drivers.add_trace(go.Bar(
472
- y=drivers_df["Driver"][::-1],
473
- x=drivers_df["Impact Score"][::-1],
474
- orientation='h',
475
- marker=dict(
476
- color=drivers_df["Impact Score"][::-1],
477
- colorscale='Blues',
478
- line=dict(color='rgb(8,48,107)', width=1.5)
479
- ),
480
- text=drivers_df["Impact Score"][::-1].round(4),
481
- textposition='outside',
482
- ))
483
-
484
- fig_drivers.update_layout(
485
- title="Ranked by Average Impact on Gross Margin",
486
- xaxis_title="Impact Score (higher = stronger influence)",
487
- yaxis_title="",
488
- height=500,
489
- showlegend=False
490
- )
491
- st.plotly_chart(fig_drivers, use_container_width=True)
492
 
493
- with col_b:
494
- st.markdown("#### Key Insights")
 
 
495
 
496
- # Generate business insights
497
- top_3 = drivers_df.head(3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498
 
499
- st.markdown(f"""
500
- <div class="insight-box">
501
- <b>πŸ₯‡ Primary Driver:</b> {top_3.iloc[0]['Driver']}<br>
502
- <small>This factor has the strongest influence on margin performance</small>
503
- </div>
504
- """, unsafe_allow_html=True)
505
 
506
- st.markdown(f"""
507
- <div class="insight-box">
508
- <b>πŸ₯ˆ Secondary Driver:</b> {top_3.iloc[1]['Driver']}<br>
509
- <small>Second most important factor affecting profitability</small>
510
- </div>
511
- """, unsafe_allow_html=True)
512
 
513
- st.markdown(f"""
514
- <div class="insight-box">
515
- <b>πŸ₯‰ Tertiary Driver:</b> {top_3.iloc[2]['Driver']}<br>
516
- <small>Third key factor with significant margin impact</small>
517
- </div>
518
- """, unsafe_allow_html=True)
519
 
520
- # Segment-level insights
521
- st.markdown("#### Segment Performance")
522
 
523
- # Join SHAP with original data
524
- cat_cols = ["product", "region", "channel"]
525
- joined = pd.concat([X_test_sample.reset_index(drop=True), shap_df.reset_index(drop=True)], axis=1)
 
 
526
 
527
- # Find segments with biggest impact
528
- grp = joined.groupby(cat_cols).mean(numeric_only=True)
529
- key_shap_cols = [c for c in grp.columns if c in shap_df.columns]
530
- grp["net_impact"] = grp[key_shap_cols].sum(axis=1)
531
 
532
- top_negative = grp.nsmallest(5, "net_impact")
533
- top_positive = grp.nlargest(5, "net_impact")
 
 
 
 
 
 
 
534
 
535
- st.markdown("**⚠️ Segments Reducing Margin:**")
536
- for idx, row in top_negative.head(3).iterrows():
537
- st.markdown(f"β€’ **{idx[0]}** β€’ {idx[1]} β€’ {idx[2]} *(Impact: {row['net_impact']:.4f})*")
 
 
 
 
 
 
538
 
539
- st.markdown("**βœ… Segments Boosting Margin:**")
540
- for idx, row in top_positive.head(3).iterrows():
541
- st.markdown(f"β€’ **{idx[0]}** β€’ {idx[1]} β€’ {idx[2]} *(Impact: {row['net_impact']:.4f})*")
542
 
543
- with tab2:
544
- st.markdown("### AI-Generated Strategic Recommendations")
545
- st.markdown("""
546
- <div class="insight-box">
547
- <b>πŸ’‘ How This Works:</b> The AI identifies segments with margin pressure and suggests specific pricing actions
548
- to improve profitability. Recommendations are ranked by expected financial impact.
549
- </div>
550
- """, unsafe_allow_html=True)
551
 
552
- # Generate recommendations
553
- with st.spinner("🧠 Generating strategic recommendations..."):
554
- joined = pd.concat([X_test_sample.reset_index(drop=True), shap_df.reset_index(drop=True)], axis=1)
555
- joined["key"] = joined["product"] + "|" + joined["region"] + "|" + joined["channel"]
556
-
557
- cand_cols = [c for c in joined.columns if ("discount" in c.lower() or "cost" in c.lower() or "price" in c.lower()) and c in shap_df.columns]
558
- seg_scores = joined.groupby("key")[cand_cols].mean().sum(axis=1)
559
- worst_keys = seg_scores.sort_values().head(15).index.tolist()
560
-
561
- recs = []
562
- for key in worst_keys:
563
- p, r, c = key.split("|")
564
- hist = df[(df["product"]==p)&(df["region"]==r)&(df["channel"]==c)].sort_values("date")
565
- if hist.empty or len(hist) < 50:
566
- continue
567
-
568
- eps, _ = estimate_segment_elasticity(hist, p, r, c)
569
-
570
- # Suggest discount reduction between 1-3 percentage points
571
- prop_disc_pts = np.clip(abs(seg_scores[key])*10, 1.0, 3.0)
572
- sim = simulate_pricing_action(hist, eps, prop_disc_pts)
573
-
574
- if sim is None or sim["gm_delta_value"] <= 0:
575
- continue
576
-
577
- # Calculate annualized impact (rough estimate)
578
- daily_transactions = len(hist) / ((hist["date"].max() - hist["date"].min()).days + 1)
579
- annual_impact = sim["gm_delta_value"] * daily_transactions * 365
580
-
581
- recs.append({
582
- "Segment": f"{p}",
583
- "Region": r,
584
- "Channel": c,
585
- "Current Discount": f"{sim['baseline_discount']:.1f}%",
586
- "Recommended Discount": f"{sim['new_discount']:.1f}%",
587
- "Expected GM Uplift": sim["gm_delta_value"],
588
- "Annual Impact Estimate": annual_impact,
589
- "Current GM%": sim["gm0_pct"]*100,
590
- "Projected GM%": sim["gm1_pct"]*100,
591
- "Price Elasticity": eps
592
- })
593
 
594
- recs_df = pd.DataFrame(recs).sort_values("Expected GM Uplift", ascending=False)
595
-
596
- if len(recs_df) > 0:
597
- # Show top 3 recommendations in cards
598
- st.markdown("#### πŸ† Top 3 Priority Actions")
599
-
600
- for i, (idx, rec) in enumerate(recs_df.head(3).iterrows()):
601
- with st.container():
602
- st.markdown(f"""
603
- <div class="recommendation-card">
604
- <h4>#{i+1}: {rec['Segment']} β€’ {rec['Region']} β€’ {rec['Channel']}</h4>
605
- <p style="font-size: 1.1rem; margin: 0.5rem 0;">
606
- <b>Recommended Action:</b> Reduce discount from <b>{rec['Current Discount']}</b> to <b>{rec['Recommended Discount']}</b>
607
- </p>
608
- <p style="font-size: 1rem; color: #666; margin: 0.5rem 0;">
609
- Current GM: <b>{rec['Current GM%']:.1f}%</b> β†’ Projected GM: <b style="color: #28a745;">{rec['Projected GM%']:.1f}%</b>
610
- </p>
611
- <p class="positive-impact">
612
- πŸ’° Expected Daily Impact: ${rec['Expected GM Uplift']:.2f}
613
- </p>
614
- <p style="font-size: 0.95rem; color: #666;">
615
- πŸ“Š Estimated Annual Impact: <b>${rec['Annual Impact Estimate']/1e3:.1f}K</b>
616
- </p>
617
- </div>
618
- """, unsafe_allow_html=True)
619
-
620
- st.markdown("---")
621
- st.markdown("#### πŸ“‹ Complete Recommendations List")
622
-
623
- # Format for display
624
- display_df = recs_df.copy()
625
- display_df["Expected GM Uplift"] = display_df["Expected GM Uplift"].apply(lambda x: f"${x:.2f}")
626
- display_df["Annual Impact Estimate"] = display_df["Annual Impact Estimate"].apply(lambda x: f"${x/1e3:.1f}K")
627
- display_df["Current GM%"] = display_df["Current GM%"].apply(lambda x: f"{x:.1f}%")
628
- display_df["Projected GM%"] = display_df["Projected GM%"].apply(lambda x: f"{x:.1f}%")
629
- display_df["Price Elasticity"] = display_df["Price Elasticity"].apply(lambda x: f"{x:.2f}")
630
-
631
- st.dataframe(display_df, use_container_width=True, height=400)
632
-
633
- # Download button
634
- st.download_button(
635
- label="πŸ“₯ Download Full Recommendations (CSV)",
636
- data=recs_df.to_csv(index=False).encode("utf-8"),
637
- file_name=f"profitability_recommendations_{datetime.today().strftime('%Y%m%d')}.csv",
638
- mime="text/csv"
639
- )
640
 
641
- # Aggregate impact
642
- total_daily_impact = recs_df["Expected GM Uplift"].sum()
643
- total_annual_impact = recs_df["Annual Impact Estimate"].sum()
644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645
  st.markdown(f"""
646
- <div class="insight-box" style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border: none;">
647
- <h3 style="color: white; margin-top: 0;">πŸ’Ž Total Opportunity</h3>
648
- <p style="font-size: 1.3rem; margin: 0.5rem 0;">
649
- <b>Daily GM Impact:</b> ${total_daily_impact:.2f}
650
- </p>
651
- <p style="font-size: 1.6rem; margin: 0.5rem 0;">
652
- <b>Estimated Annual Impact:</b> ${total_annual_impact/1e6:.2f}M
653
- </p>
654
- <small>Based on current transaction volumes and assuming consistent implementation</small>
655
  </div>
656
  """, unsafe_allow_html=True)
657
  else:
658
- st.info("No significant optimization opportunities detected in current data.")
659
-
660
- with tab3:
661
- st.markdown("### Custom What-If Analysis")
662
- st.markdown("""
663
- <div class="insight-box">
664
- <b>πŸ§ͺ Interactive Simulation:</b> Test different pricing strategies for specific segments to understand
665
- the potential impact on revenue, volume, and profitability.
666
- </div>
667
- """, unsafe_allow_html=True)
668
-
669
- # Segment selector
670
- last_day = df["date"].max()
671
- seg_today = df[df["date"]==last_day][["product","region","channel"]].drop_duplicates()
672
-
673
- col_sim1, col_sim2, col_sim3 = st.columns(3)
674
-
675
- with col_sim1:
676
- selected_product = st.selectbox("πŸ“¦ Select Product", sorted(seg_today["product"].unique()))
677
- with col_sim2:
678
- selected_region = st.selectbox("🌍 Select Region", sorted(seg_today["region"].unique()))
679
- with col_sim3:
680
- selected_channel = st.selectbox("πŸ›’ Select Channel", sorted(seg_today["channel"].unique()))
681
-
682
- # Get segment history
683
- seg_hist = df[
684
- (df["product"]==selected_product) &
685
- (df["region"]==selected_region) &
686
- (df["channel"]==selected_channel)
687
- ].sort_values("date")
688
-
689
- if not seg_hist.empty and len(seg_hist) >= 50:
690
- elasticity, _ = estimate_segment_elasticity(seg_hist, selected_product, selected_region, selected_channel)
691
-
692
- # Current state
693
- current = seg_hist.iloc[-1]
694
-
695
  st.markdown(f"""
696
- <div class="insight-box">
697
- <b>πŸ“Š Current State:</b><br>
698
- β€’ Current Discount: <b>{current['discount_pct']*100:.1f}%</b><br>
699
- β€’ Net Price: <b>${current['net_price']:.2f}</b><br>
700
- β€’ Unit Cost: <b>${current['unit_cost']:.2f}</b><br>
701
- β€’ Avg Daily Volume: <b>{seg_hist.tail(7)['qty'].mean():.0f} units</b><br>
702
- β€’ Current GM%: <b>{current['gm_pct']*100:.1f}%</b><br>
703
- β€’ Price Elasticity: <b>{elasticity:.2f}</b> <small>(% change in volume per 1% price change)</small>
704
  </div>
705
  """, unsafe_allow_html=True)
706
 
707
- st.markdown("#### 🎯 Test Pricing Strategy")
708
-
709
- # Pricing strategy slider
710
- discount_change = st.slider(
711
- "Adjust Discount Level (percentage points)",
712
- min_value=-10.0,
713
- max_value=5.0,
714
- value=0.0,
715
- step=0.5,
716
- help="Negative values reduce discount (increase price), positive values increase discount"
717
- )
718
 
719
- if discount_change != 0:
720
- sim = simulate_pricing_action(seg_hist, elasticity, -discount_change)
721
-
722
- if sim:
723
- # Visualization
724
- col_res1, col_res2 = st.columns(2)
725
-
726
- with col_res1:
727
- # Create comparison chart
728
- comparison_data = pd.DataFrame({
729
- 'Metric': ['Price', 'Volume', 'GM%'],
730
- 'Current': [sim['baseline_price'], sim['baseline_qty'], sim['gm0_pct']*100],
731
- 'Projected': [sim['new_price'], sim['new_qty'], sim['gm1_pct']*100]
732
- })
733
-
734
- fig_comp = go.Figure()
735
- fig_comp.add_trace(go.Bar(
736
- name='Current',
737
- x=comparison_data['Metric'],
738
- y=comparison_data['Current'],
739
- marker_color='#94a3b8'
740
- ))
741
- fig_comp.add_trace(go.Bar(
742
- name='Projected',
743
- x=comparison_data['Metric'],
744
- y=comparison_data['Projected'],
745
- marker_color='#3b82f6'
746
- ))
747
-
748
- fig_comp.update_layout(
749
- title="Current vs. Projected Performance",
750
- barmode='group',
751
- height=350
752
- )
753
- st.plotly_chart(fig_comp, use_container_width=True)
754
-
755
- with col_res2:
756
- st.markdown("#### πŸ“ˆ Simulation Results")
757
-
758
- gm_change = sim['gm1_pct'] - sim['gm0_pct']
759
- rev_change_pct = (sim['revenue_delta'] / (sim['baseline_price'] * sim['baseline_qty'])) * 100 if sim['baseline_price'] * sim['baseline_qty'] > 0 else 0
760
- vol_change_pct = ((sim['new_qty'] - sim['baseline_qty']) / sim['baseline_qty']) * 100 if sim['baseline_qty'] > 0 else 0
761
-
762
- st.metric(
763
- "Gross Margin Impact",
764
- f"{sim['gm1_pct']*100:.1f}%",
765
- f"{gm_change*100:+.1f}pp"
766
- )
767
-
768
- st.metric(
769
- "Revenue Impact",
770
- f"${sim['new_price'] * sim['new_qty']:.2f}",
771
- f"{rev_change_pct:+.1f}%"
772
- )
773
-
774
- st.metric(
775
- "Volume Impact",
776
- f"{sim['new_qty']:.0f} units",
777
- f"{vol_change_pct:+.1f}%"
778
- )
779
-
780
- # Daily P&L impact
781
- st.markdown(f"""
782
- <div class="insight-box" style="margin-top: 1rem;">
783
- <b>πŸ’° Daily P&L Impact:</b><br>
784
- <span style="font-size: 1.5rem; {'color: #28a745' if sim['gm_delta_value'] > 0 else 'color: #dc3545'}">
785
- ${sim['gm_delta_value']:+.2f}
786
- </span>
787
- </div>
788
- """, unsafe_allow_html=True)
789
- else:
790
- st.info("πŸ‘† Adjust the discount slider above to simulate different pricing strategies")
791
 
792
- else:
793
- st.warning("⚠️ Insufficient data for selected segment. Please choose a different combination.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
794
 
795
  st.markdown("---")
796
- st.markdown("""
797
- <div style="text-align: center; color: #666; padding: 2rem 0;">
798
- <small>
799
- πŸ”’ Demo Mode: Using synthetic SAP-style data for illustration purposes<br>
800
- For production deployment, connect to live SAP S/4HANA CDS views or data warehouse
801
- </small>
802
- </div>
803
- """, unsafe_allow_html=True)
 
3
  import pandas as pd
4
  import plotly.express as px
5
  import plotly.graph_objects as go
 
6
  import shap
7
  import matplotlib.pyplot as plt
8
+
9
  from datetime import datetime, timedelta
10
  from sklearn.model_selection import train_test_split
11
  from sklearn.compose import ColumnTransformer
 
15
  from sklearn.linear_model import LinearRegression
16
  from sklearn.metrics import r2_score, mean_absolute_error
17
 
18
+ st.set_page_config(page_title="Profitability Intelligence", layout="wide", initial_sidebar_state="collapsed")
 
 
 
 
 
 
19
 
20
+ # Custom CSS for better UI
21
  st.markdown("""
22
  <style>
23
  .main-header {
24
+ font-size: 2.5rem;
25
  font-weight: 700;
26
  color: #1f77b4;
 
27
  margin-bottom: 0.5rem;
 
28
  }
29
  .sub-header {
30
+ font-size: 1.1rem;
31
  color: #666;
 
32
  margin-bottom: 2rem;
33
  }
34
+ .insight-box {
35
  background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
36
  padding: 1.5rem;
37
+ border-radius: 10px;
 
38
  color: white;
 
 
 
 
 
 
39
  margin: 1rem 0;
 
 
40
  }
41
+ .metric-card {
42
  background: white;
 
 
43
  padding: 1.5rem;
44
+ border-radius: 8px;
45
+ box-shadow: 0 2px 4px rgba(0,0,0,0.1);
46
+ border-left: 4px solid #1f77b4;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  }
48
+ .recommendation-card {
49
+ background: #f0f9ff;
50
+ padding: 1rem;
51
+ border-radius: 8px;
52
+ border-left: 4px solid #22c55e;
53
+ margin: 0.5rem 0;
54
  }
55
+ .warning-card {
56
+ background: #fef3c7;
57
+ padding: 1rem;
58
+ border-radius: 8px;
59
+ border-left: 4px solid #f59e0b;
60
+ margin: 0.5rem 0;
61
  }
62
  </style>
63
  """, unsafe_allow_html=True)
64
 
65
  # -----------------------------
66
+ # Data Generation (Hidden from UI)
67
  # -----------------------------
68
  @st.cache_data(show_spinner=False)
69
+ def generate_synthetic_data(days=90, seed=42, rows_per_day=800):
70
  rng = np.random.default_rng(seed)
71
  start_date = datetime.today().date() - timedelta(days=days)
72
  dates = pd.date_range(start_date, periods=days, freq="D")
73
+
74
  products = ["Premium Widget", "Standard Widget", "Economy Widget", "Deluxe Widget"]
75
+ regions = ["North America", "Europe", "Asia Pacific"]
76
  channels = ["Direct Sales", "Distribution Partners", "E-Commerce"]
77
 
78
  base_price = {"Premium Widget": 120, "Standard Widget": 135, "Economy Widget": 110, "Deluxe Widget": 150}
79
+ base_cost = {"Premium Widget": 70, "Standard Widget": 88, "Economy Widget": 60, "Deluxe Widget": 95}
80
+
81
+ region_price_bump = {"North America": 1.00, "Europe": 1.03, "Asia Pacific": 0.97}
82
+ region_cost_bump = {"North America": 1.00, "Europe": 1.02, "Asia Pacific": 1.01}
83
+
84
  channel_discount_mean = {"Direct Sales": 0.06, "Distribution Partners": 0.12, "E-Commerce": 0.04}
85
+ channel_discount_std = {"Direct Sales": 0.02, "Distribution Partners": 0.03, "E-Commerce": 0.02}
86
 
87
  seg_epsilon = {}
88
  for p in products:
 
103
 
104
  n = rows_per_day
105
  prod = rng.choice(products, size=n, p=[0.35, 0.3, 0.2, 0.15])
106
+ reg = rng.choice(regions, size=n, p=[0.4, 0.35, 0.25])
107
+ ch = rng.choice(channels, size=n, p=[0.45, 0.35, 0.20])
108
 
109
  base_p = np.array([base_price[x] for x in prod]) * np.array([region_price_bump[x] for x in reg])
110
+ base_c = np.array([base_cost[x] for x in prod]) * np.array([region_cost_bump[x] for x in reg])
111
 
112
  discount = np.clip(
113
  np.array([channel_discount_mean[x] for x in ch]) +
114
  rng.normal(0, [channel_discount_std[x] for x in ch]), 0, 0.45
115
  )
 
116
  list_price = rng.normal(base_p, 5)
117
  net_price = np.clip(list_price * (1 - discount), 20, None)
118
  unit_cost = np.clip(rng.normal(base_c, 4), 10, None)
 
123
  qty = np.maximum(1, rng.poisson(8 * dow_mult * macro * qty_mu))
124
 
125
  revenue = net_price * qty
126
+ cogs = unit_cost * qty
127
+ gm_val = revenue - cogs
128
+ gm_pct = np.where(revenue > 0, gm_val / revenue, 0.0)
129
 
130
  for i in range(n):
131
  records.append({
132
+ "date": d, "product": prod[i], "region": reg[i], "channel": ch[i],
133
+ "list_price": float(list_price[i]), "discount_pct": float(discount[i]),
134
+ "net_price": float(net_price[i]), "unit_cost": float(unit_cost[i]),
135
+ "qty": int(qty[i]), "revenue": float(revenue[i]), "cogs": float(cogs[i]),
136
+ "gm_value": float(gm_val[i]), "gm_pct": float(gm_pct[i]), "dow": dow
 
 
 
 
 
 
 
 
 
137
  })
138
+ return pd.DataFrame(records)
 
 
139
 
140
  def build_features(df: pd.DataFrame):
141
  feats_num = ["net_price", "unit_cost", "qty", "discount_pct", "list_price", "dow"]
142
  feats_cat = ["product", "region", "channel"]
143
+
144
  df = df.sort_values("date").copy()
145
  seg = ["product", "region", "channel"]
146
  df["price_per_unit"] = df["net_price"]
147
+ df["cost_per_unit"] = df["unit_cost"]
148
+
149
  df["roll7_qty"] = df.groupby(seg)["qty"].transform(lambda s: s.rolling(7, min_periods=1).median())
150
  df["roll7_price"] = df.groupby(seg)["price_per_unit"].transform(lambda s: s.rolling(7, min_periods=1).median())
151
+ df["roll7_cost"] = df.groupby(seg)["cost_per_unit"].transform(lambda s: s.rolling(7, min_periods=1).median())
152
+
153
  feats_num += ["price_per_unit", "cost_per_unit", "roll7_qty", "roll7_price", "roll7_cost"]
154
+ return df, feats_num, feats_cat, "gm_pct"
 
155
 
156
  @st.cache_resource(show_spinner=False)
157
+ def train_model(df: pd.DataFrame, feats_num, feats_cat, target):
158
+ X = df[feats_num + feats_cat]
159
+ y = df[target]
160
+
161
  pre = ColumnTransformer(
162
  transformers=[
163
  ("cat", OneHotEncoder(handle_unknown="ignore"), feats_cat),
164
  ("num", "passthrough", feats_num),
165
  ]
166
  )
167
+ model = RandomForestRegressor(n_estimators=300, max_depth=None, random_state=42, n_jobs=-1, min_samples_leaf=3)
168
  pipe = Pipeline([("pre", pre), ("rf", model)])
169
+
170
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, shuffle=False)
171
  pipe.fit(X_train, y_train)
172
  pred = pipe.predict(X_test)
173
+
174
+ return pipe, {"r2": r2_score(y_test, pred), "mae": mean_absolute_error(y_test, pred)}, X_test
 
175
 
176
  @st.cache_resource(show_spinner=False)
177
+ def compute_shap(_pipe, X_sample, feats_num, feats_cat, shap_sample=1000, seed=42):
178
+ np.random.seed(seed)
179
+ preproc = _pipe.named_steps["pre"]
180
  rf = _pipe.named_steps["rf"]
181
+ feature_names = list(preproc.named_transformers_["cat"].get_feature_names_out(feats_cat)) + feats_num
 
 
 
 
 
 
182
 
183
  if len(X_sample) > shap_sample:
184
  sample_idx = np.random.choice(len(X_sample), size=shap_sample, replace=False)
185
  X_sample = X_sample.iloc[sample_idx]
186
 
187
+ X_t = preproc.transform(X_sample)
188
  try:
189
  X_t = X_t.toarray()
190
+ except:
191
  pass
192
 
193
  explainer = shap.TreeExplainer(rf)
194
  shap_values = explainer.shap_values(X_t)
195
  shap_df = pd.DataFrame(shap_values, columns=feature_names)
196
+
197
+ joined = pd.concat([X_sample.reset_index(drop=True), shap_df.reset_index(drop=True)], axis=1)
198
+ return shap_df, X_sample.reset_index(drop=True), feature_names, joined
199
 
200
  def estimate_segment_elasticity(df: pd.DataFrame, product, region, channel):
201
  seg_df = df[(df["product"]==product)&(df["region"]==region)&(df["channel"]==channel)]
 
206
  lin = LinearRegression().fit(x, y)
207
  return float(lin.coef_[0]), True
208
 
209
+ def simulate_action(segment_df: pd.DataFrame, elasticity, delta_discount=0.0, delta_unit_cost=0.0):
210
  if segment_df.empty:
211
  return None
212
  base = segment_df.iloc[-1]
213
+ p0, c0, q0, d0 = base["net_price"], base["unit_cost"], base["qty"], base["discount_pct"]
 
 
 
214
 
215
+ new_discount = np.clip(d0 + delta_discount, 0.0, 0.45)
216
  p1 = max(0.01, base["list_price"] * (1 - new_discount))
217
+ c1 = max(0.01, c0 + delta_unit_cost)
218
+ q1 = max(0.0, q0 * (p1 / p0) ** elasticity) if p0 > 0 else q0
219
 
220
+ rev0, cogs0 = p0 * q0, c0 * q0
221
+ rev1, cogs1 = p1 * q1, c1 * q1
 
 
 
 
 
 
 
 
 
 
 
222
 
223
  return {
224
+ "baseline_price": p0, "new_price": p1, "baseline_cost": c0, "new_cost": c1,
225
+ "baseline_qty": q0, "new_qty": q1, "gm_delta_value": (rev1 - cogs1) - (rev0 - cogs0),
226
+ "gm0_pct": (rev0 - cogs0)/rev0 if rev0>0 else 0.0,
227
+ "gm1_pct": (rev1 - cogs1)/rev1 if rev1>0 else 0.0,
228
+ "new_discount": new_discount
 
 
229
  }
230
 
231
  # -----------------------------
232
+ # Initialize Data
233
  # -----------------------------
234
+ if "data_loaded" not in st.session_state:
235
+ with st.spinner("πŸ”„ Loading SAP data and building intelligence models..."):
236
+ df = generate_synthetic_data(days=90, seed=42, rows_per_day=800)
237
+ df_feat, feats_num, feats_cat, target = build_features(df)
238
+ pipe, metrics, X_test = train_model(df_feat, feats_num, feats_cat, target)
239
+ shap_df, X_test_sample, feature_names, joined = compute_shap(pipe, X_test, feats_num, feats_cat)
240
+
241
+ st.session_state["df"] = df
242
+ st.session_state["df_feat"] = df_feat
243
+ st.session_state["pipe"] = pipe
244
+ st.session_state["metrics"] = metrics
245
+ st.session_state["shap_df"] = shap_df
246
+ st.session_state["joined"] = joined
247
+ st.session_state["feats_num"] = feats_num
248
+ st.session_state["feats_cat"] = feats_cat
249
+ st.session_state["data_loaded"] = True
250
+
251
+ df = st.session_state["df"]
252
+ joined = st.session_state["joined"]
253
+ metrics = st.session_state["metrics"]
254
+ shap_df = st.session_state["shap_df"]
255
 
256
+ # -----------------------------
257
+ # HEADER
258
+ # -----------------------------
259
+ st.markdown('<p class="main-header">πŸ’° Profitability Intelligence Dashboard</p>', unsafe_allow_html=True)
260
+ st.markdown('<p class="sub-header">AI-powered insights to understand and optimize your gross margin drivers</p>', unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
261
 
262
+ # -----------------------------
263
+ # EXECUTIVE SUMMARY
264
+ # -----------------------------
265
+ st.markdown("## πŸ“Š Executive Summary")
266
+
267
+ daily = df.groupby("date").agg(revenue=("revenue","sum"), cogs=("cogs","sum"), gm_value=("gm_value","sum")).reset_index()
268
+ daily["gm_pct"] = np.where(daily["revenue"]>0, daily["gm_value"]/daily["revenue"], 0.0)
269
  today_row = daily.iloc[-1]
270
  yesterday_row = daily.iloc[-2] if len(daily) > 1 else today_row
 
271
  roll7 = daily["gm_pct"].tail(7).mean()
272
+ roll30 = daily["gm_pct"].tail(30).mean()
 
 
273
 
274
  col1, col2, col3, col4 = st.columns(4)
275
 
276
  with col1:
277
+ delta = today_row["gm_pct"] - yesterday_row["gm_pct"]
278
+ st.metric("Today's Gross Margin %", f"{today_row['gm_pct']*100:.1f}%",
279
+ f"{delta*100:+.1f}% vs yesterday")
 
 
 
 
280
 
281
  with col2:
282
+ st.metric("Revenue (Today)", f"${today_row['revenue']/1e6:.2f}M")
 
 
 
 
 
 
283
 
284
  with col3:
285
+ trend = "↗️" if roll7 > roll30 else "β†˜οΈ"
286
+ st.metric("7-Day Avg GM%", f"{roll7*100:.1f}%", f"{trend} vs 30-day avg")
 
 
 
 
287
 
288
  with col4:
289
+ st.metric("Gross Profit (Today)", f"${today_row['gm_value']/1e6:.2f}M")
290
+
291
+ # Trend chart
292
+ fig_trend = go.Figure()
293
+ fig_trend.add_trace(go.Scatter(x=daily["date"], y=daily["gm_pct"]*100,
294
+ mode='lines', name='Daily GM%', line=dict(color='#1f77b4', width=2)))
295
+ fig_trend.add_trace(go.Scatter(x=daily["date"], y=daily["gm_pct"].rolling(7).mean()*100,
296
+ mode='lines', name='7-Day Average', line=dict(color='#ff7f0e', width=2, dash='dash')))
297
+ fig_trend.update_layout(title="Gross Margin % Trend", xaxis_title="Date", yaxis_title="GM %",
298
+ height=300, hovermode='x unified')
299
+ st.plotly_chart(fig_trend, use_container_width=True)
300
+
301
+ # Key Insight Box
302
+ gm_change = (today_row["gm_pct"] - roll30) * 100
303
+ if abs(gm_change) > 0.5:
304
+ trend_word = "improved" if gm_change > 0 else "declined"
305
+ st.markdown(f"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306
  <div class="insight-box">
307
+ <h3>πŸ’‘ Key Insight</h3>
308
+ <p>Your gross margin has <strong>{trend_word} by {abs(gm_change):.1f} percentage points</strong> compared to the 30-day average.
309
+ The analysis below identifies the specific drivers and business segments responsible for this change.</p>
310
  </div>
311
  """, unsafe_allow_html=True)
312
 
313
+ st.markdown("---")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314
 
315
+ # -----------------------------
316
+ # DRIVER ANALYSIS
317
+ # -----------------------------
318
+ st.markdown("## πŸ” What's Driving Your Profitability?")
319
 
320
+ st.markdown("""
321
+ Our AI model has analyzed thousands of transactions to identify which factors have the biggest impact on your gross margin.
322
+ Think of this as understanding which levers you can pull to improve profitability.
323
+ """)
324
+
325
+ # Calculate driver importance
326
+ mean_abs = shap_df.abs().mean().sort_values(ascending=False)
327
+
328
+ # Simplify feature names for business users
329
+ def simplify_feature_name(name):
330
+ if "discount" in name.lower():
331
+ return "Discount Level"
332
+ elif "cost_per_unit" in name.lower() or "unit_cost" in name.lower():
333
+ return "Unit Cost"
334
+ elif "price_per_unit" in name.lower() or "net_price" in name.lower():
335
+ return "Selling Price"
336
+ elif "qty" in name.lower():
337
+ return "Volume"
338
+ elif "product_" in name.lower():
339
+ return name.replace("product_", "Product: ")
340
+ elif "channel_" in name.lower():
341
+ return name.replace("channel_", "Channel: ")
342
+ elif "region_" in name.lower():
343
+ return name.replace("region_", "Region: ")
344
+ return name
345
+
346
+ # Top 10 drivers
347
+ top_drivers = mean_abs.head(10)
348
+ driver_names = [simplify_feature_name(f) for f in top_drivers.index]
349
+
350
+ fig_drivers = go.Figure(go.Bar(
351
+ y=driver_names[::-1],
352
+ x=top_drivers.values[::-1],
353
+ orientation='h',
354
+ marker=dict(color=top_drivers.values[::-1], colorscale='Blues', showscale=False)
355
+ ))
356
+ fig_drivers.update_layout(
357
+ title="Top 10 Profit Margin Drivers (Impact Strength)",
358
+ xaxis_title="Impact on Gross Margin",
359
+ yaxis_title="",
360
+ height=400,
361
+ showlegend=False
362
+ )
363
+ st.plotly_chart(fig_drivers, use_container_width=True)
364
 
365
+ # Business interpretation
366
+ st.markdown("""
367
+ **What does this mean?**
368
+ - **Higher bars** = Bigger impact on your gross margin
369
+ - Focus your attention on the top 3-5 drivers for maximum profitability improvement
370
+ """)
371
 
372
+ st.markdown("---")
 
 
 
 
 
373
 
374
+ # -----------------------------
375
+ # SEGMENT PERFORMANCE
376
+ # -----------------------------
377
+ st.markdown("## πŸ“ Performance by Business Segment")
 
 
378
 
379
+ st.markdown("Not all business segments perform equally. Here's where you're winning and where there's opportunity:")
 
380
 
381
+ # Calculate segment performance
382
+ key_feats = [c for c in joined.columns if any(k in c for k in ["discount", "price_per_unit", "cost_per_unit","unit_cost","net_price"])]
383
+ grp = joined.groupby(["product","region","channel"]).mean(numeric_only=True)
384
+ rank_cols = [c for c in grp.columns if c in key_feats]
385
+ segment_impact = grp[rank_cols].sum(axis=1).sort_values()
386
 
387
+ col1, col2 = st.columns(2)
 
 
 
388
 
389
+ with col1:
390
+ st.markdown("### πŸ”΄ Segments Dragging Margin Down")
391
+ worst = segment_impact.head(8)
392
+ worst_df = pd.DataFrame({
393
+ 'Segment': [f"{p} β€’ {r} β€’ {c}" for p, r, c in worst.index],
394
+ 'Margin Impact': worst.values
395
+ })
396
+ worst_df['Impact Score'] = worst_df['Margin Impact'].apply(lambda x: 'πŸ”΄' * min(5, int(abs(x)*10)))
397
+ st.dataframe(worst_df[['Segment', 'Impact Score']], hide_index=True, use_container_width=True)
398
 
399
+ with col2:
400
+ st.markdown("### 🟒 Segments Lifting Margin Up")
401
+ best = segment_impact.tail(8).sort_values(ascending=False)
402
+ best_df = pd.DataFrame({
403
+ 'Segment': [f"{p} β€’ {r} β€’ {c}" for p, r, c in best.index],
404
+ 'Margin Impact': best.values
405
+ })
406
+ best_df['Performance'] = best_df['Margin Impact'].apply(lambda x: '🟒' * min(5, max(1, int(x*10))))
407
+ st.dataframe(best_df[['Segment', 'Performance']], hide_index=True, use_container_width=True)
408
 
409
+ st.markdown("---")
 
 
410
 
411
+ # -----------------------------
412
+ # WHAT-IF SIMULATOR
413
+ # -----------------------------
414
+ st.markdown("## 🎯 What-If Simulator: Test Your Strategies")
 
 
 
 
415
 
416
+ st.markdown("""
417
+ Use this simulator to model the financial impact of potential pricing or cost optimization strategies.
418
+ Select a segment and adjust the levers to see the projected outcome.
419
+ """)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420
 
421
+ # Segment selector
422
+ last_day = df["date"].max()
423
+ seg_today = df[df["date"]==last_day][["product","region","channel"]].drop_duplicates().sort_values(["product","region","channel"])
424
+ seg_options = seg_today.apply(lambda r: f"{r['product']} β€’ {r['region']} β€’ {r['channel']}", axis=1).tolist()
425
+
426
+ col1, col2 = st.columns([2, 1])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
427
 
428
+ with col1:
429
+ selected_segment = st.selectbox("**Select Business Segment:**", seg_options, key="segment_selector")
 
430
 
431
+ with col2:
432
+ st.markdown("**Scenario Type:**")
433
+ scenario = st.radio("", ["Optimize Discount", "Reduce Costs", "Custom"], horizontal=True, label_visibility="collapsed")
434
+
435
+ prod_sel, reg_sel, ch_sel = [s.strip() for s in selected_segment.split("β€’")]
436
+ seg_hist = df[(df["product"]==prod_sel)&(df["region"]==reg_sel)&(df["channel"]==ch_sel)].sort_values("date")
437
+ elasticity, _ = estimate_segment_elasticity(seg_hist, prod_sel, reg_sel, ch_sel)
438
+
439
+ # Pre-set scenarios
440
+ if scenario == "Optimize Discount":
441
+ delta_disc = -2.0
442
+ delta_cost = 0.0
443
+ st.info("πŸ“‰ Testing a 2 percentage point discount reduction to improve margin")
444
+ elif scenario == "Reduce Costs":
445
+ delta_disc = 0.0
446
+ delta_cost = -3.0
447
+ st.info("πŸ’° Testing a $3 reduction in unit cost through operational efficiency")
448
+ else:
449
+ col1, col2 = st.columns(2)
450
+ with col1:
451
+ delta_disc = st.slider("Adjust Discount (percentage points)", -10.0, 10.0, -2.0, 0.5,
452
+ help="Negative = tighter discount, Positive = deeper discount")
453
+ with col2:
454
+ delta_cost = st.slider("Adjust Unit Cost ($)", -10.0, 10.0, 0.0, 0.5,
455
+ help="Negative = cost reduction, Positive = cost increase")
456
+
457
+ # Run simulation
458
+ sim_res = simulate_action(seg_hist, elasticity, delta_discount=delta_disc/100.0, delta_unit_cost=delta_cost)
459
+
460
+ if sim_res:
461
+ st.markdown("### πŸ“ˆ Projected Impact")
462
+
463
+ # Results in clean columns
464
+ metric_col1, metric_col2, metric_col3, metric_col4 = st.columns(4)
465
+
466
+ with metric_col1:
467
+ price_change = ((sim_res['new_price'] - sim_res['baseline_price']) / sim_res['baseline_price']) * 100
468
+ st.metric("Price per Unit", f"${sim_res['new_price']:.2f}", f"{price_change:+.1f}%")
469
+
470
+ with metric_col2:
471
+ cost_change = ((sim_res['new_cost'] - sim_res['baseline_cost']) / sim_res['baseline_cost']) * 100
472
+ st.metric("Cost per Unit", f"${sim_res['new_cost']:.2f}", f"{cost_change:+.1f}%")
473
+
474
+ with metric_col3:
475
+ qty_change = ((sim_res['new_qty'] - sim_res['baseline_qty']) / sim_res['baseline_qty']) * 100
476
+ st.metric("Volume", f"{sim_res['new_qty']:.0f} units", f"{qty_change:+.1f}%")
477
+
478
+ with metric_col4:
479
+ gm_change = (sim_res['gm1_pct'] - sim_res['gm0_pct']) * 100
480
+ st.metric("Gross Margin %", f"{sim_res['gm1_pct']*100:.1f}%", f"{gm_change:+.1f} pts")
481
+
482
+ # Financial impact
483
+ if sim_res['gm_delta_value'] > 0:
484
  st.markdown(f"""
485
+ <div class="recommendation-card">
486
+ <h4>βœ… Positive Impact: +${sim_res['gm_delta_value']:.2f} in daily gross profit</h4>
487
+ <p>This strategy would <strong>improve profitability</strong> for this segment.
488
+ Expected price elasticity of {elasticity:.2f} means volume {('decreases' if elasticity < 0 and delta_disc < 0 else 'adjusts')}
489
+ as prices change, but margin improvement outweighs volume impact.</p>
 
 
 
 
490
  </div>
491
  """, unsafe_allow_html=True)
492
  else:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493
  st.markdown(f"""
494
+ <div class="warning-card">
495
+ <h4>⚠️ Negative Impact: ${sim_res['gm_delta_value']:.2f} in daily gross profit</h4>
496
+ <p>This strategy would <strong>reduce profitability</strong> for this segment.
497
+ Consider alternative approaches or test smaller adjustments.</p>
 
 
 
 
498
  </div>
499
  """, unsafe_allow_html=True)
500
 
501
+ st.markdown("---")
 
 
 
 
 
 
 
 
 
 
502
 
503
+ # -----------------------------
504
+ # AI RECOMMENDATIONS
505
+ # -----------------------------
506
+ st.markdown("## πŸ’‘ AI-Powered Recommendations")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
507
 
508
+ st.markdown("""
509
+ Based on the analysis of all segments, here are the top opportunities to improve profitability.
510
+ These recommendations are ranked by expected financial impact.
511
+ """)
512
+
513
+ # Generate recommendations
514
+ worst_keys = segment_impact.head(20).index.tolist()
515
+ recs = []
516
+ for p, r, c in worst_keys:
517
+ hist = df[(df["product"]==p)&(df["region"]==r)&(df["channel"]==c)].sort_values("date")
518
+ if hist.empty:
519
+ continue
520
+ eps, _ = estimate_segment_elasticity(hist, p, r, c)
521
+ prop_disc_pts = -np.clip(abs(segment_impact[(p,r,c)])*10, 0.5, 3.0)
522
+ sim = simulate_action(hist, eps, delta_discount=prop_disc_pts/100.0, delta_unit_cost=0.0)
523
+ if sim and sim["gm_delta_value"] > 0:
524
+ recs.append({
525
+ "Segment": f"{p} β€’ {r} β€’ {c}",
526
+ "Recommended Action": f"Reduce discount by {abs(prop_disc_pts):.1f}%",
527
+ "Expected Daily Uplift": f"${sim['gm_delta_value']:.2f}",
528
+ "New Margin %": f"{sim['gm1_pct']*100:.1f}%",
529
+ "Risk Level": "Low" if abs(eps) < 0.5 else "Medium"
530
+ })
531
+
532
+ rec_df = pd.DataFrame(recs).sort_values("Expected Daily Uplift", ascending=False).head(10)
533
+
534
+ if not rec_df.empty:
535
+ st.dataframe(rec_df, hide_index=True, use_container_width=True)
536
+
537
+ total_potential = rec_df["Expected Daily Uplift"].str.replace("$", "").astype(float).sum()
538
+ st.success(f"🎯 **Total Daily Profit Opportunity: ${total_potential:.2f}** | Annualized: ${total_potential * 365:,.0f}")
539
+
540
+ # Download button
541
+ csv = rec_df.to_csv(index=False).encode('utf-8')
542
+ st.download_button(
543
+ label="πŸ“₯ Download Full Recommendations (CSV)",
544
+ data=csv,
545
+ file_name=f"profitability_recommendations_{datetime.now().strftime('%Y%m%d')}.csv",
546
+ mime="text/csv"
547
+ )
548
+ else:
549
+ st.info("No high-confidence recommendations available at this time. Current segment performance is well-optimized.")
550
 
551
  st.markdown("---")
552
+
553
+ # Footer
554
+ st.caption("πŸ”’ **Demo Environment** | Data shown is synthetic for demonstration. Connect to your SAP system for live insights.")
555
+ st.caption(f"Model Performance: RΒ² = {metrics['r2']:.3f} | Analyzing {len(df):,} transactions across {len(df['product'].unique())} products")