File size: 16,825 Bytes
0e1a34f
994118b
 
 
 
0e1a34f
994118b
 
 
0e1a34f
994118b
 
 
0e1a34f
994118b
 
 
 
0e1a34f
 
 
994118b
 
0e1a34f
994118b
 
 
0e1a34f
994118b
 
 
 
 
 
 
 
 
 
 
 
0e1a34f
994118b
 
 
 
0e1a34f
994118b
0e1a34f
994118b
0e1a34f
994118b
 
0e1a34f
994118b
 
0e1a34f
994118b
 
 
 
0e1a34f
994118b
0e1a34f
994118b
 
 
 
 
0e1a34f
994118b
0e1a34f
 
 
994118b
 
0e1a34f
 
 
 
994118b
0e1a34f
994118b
 
 
 
0e1a34f
994118b
 
 
0e1a34f
994118b
0e1a34f
994118b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ec7e4c
0e1a34f
994118b
 
 
 
 
 
0e1a34f
994118b
 
0e1a34f
 
994118b
0e1a34f
 
994118b
 
0e1a34f
994118b
0e1a34f
 
 
 
 
994118b
 
 
 
 
 
0e1a34f
 
 
994118b
0e1a34f
 
 
 
 
994118b
 
 
0e1a34f
 
 
 
 
 
 
 
 
 
994118b
 
 
 
0e1a34f
 
 
 
994118b
 
 
 
 
0e1a34f
994118b
 
 
 
 
 
0e1a34f
994118b
 
 
0e1a34f
994118b
 
0e1a34f
 
 
 
 
994118b
 
 
0e1a34f
994118b
0e1a34f
 
994118b
0e1a34f
 
 
 
 
 
994118b
 
0e1a34f
 
 
 
 
994118b
 
5ec7e4c
994118b
 
0e1a34f
 
5ec7e4c
0e1a34f
994118b
0e1a34f
5ec7e4c
0e1a34f
 
 
 
5ec7e4c
 
 
 
 
 
 
 
 
0e1a34f
 
5ec7e4c
0e1a34f
 
5ec7e4c
0e1a34f
 
 
 
 
 
 
 
 
5ec7e4c
0e1a34f
 
 
5ec7e4c
0e1a34f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ec7e4c
0e1a34f
5ec7e4c
 
 
 
 
0e1a34f
5ec7e4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e1a34f
 
 
 
 
 
994118b
 
5ec7e4c
 
 
994118b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import os, json, tempfile, logging
import gradio as gr
import pandas as pd
import numpy as np

# Quiet noisy logs
logging.getLogger("cmdstanpy").setLevel(logging.WARNING)
logging.getLogger("prophet").setLevel(logging.WARNING)

# ==== Tools (your @tool template) ============================================
from smolagents import tool, CodeAgent, OpenAIServerModel

@tool
def forecast_tool(horizon_months: int = 1, use_demo: bool = True, history_csv_path: str = "") -> str:
    """
    Forecast monthly demand for finished goods using Prophet (demo-friendly).

    Args:
        horizon_months (int): Number of future months to forecast (>=1). Defaults to 1.
        use_demo (bool): If True, generate synthetic history for FG100/FG200. Defaults to True.
        history_csv_path (str): Optional CSV path with columns [product_id,date,qty] to override demo.

    Returns:
        str: JSON string list of {"product_id": str, "period_start": "YYYY-MM-01", "forecast_qty": float}.
    """
    from prophet import Prophet

    # 1) History
    if use_demo or not history_csv_path:
        rng = pd.date_range("2023-01-01", periods=24, freq="MS")
        rows = []
        np.random.seed(0)
        for pid, base in [("FG100", 1800), ("FG200", 900)]:
            season = 1 + 0.15 * np.sin(2 * np.pi * (np.arange(len(rng)) / 12.0))
            qty = (base * season).astype(float)
            for d, q in zip(rng, qty):
                rows.append({"product_id": pid, "date": d, "qty": float(q)})
        df = pd.DataFrame(rows)
    else:
        df = pd.read_csv(history_csv_path)
        assert {"product_id", "date", "qty"} <= set(df.columns), "CSV must have product_id,date,qty"
        df["date"] = pd.to_datetime(df["date"], errors="coerce")
        df = df.dropna(subset=["date"])
        df["qty"] = pd.to_numeric(df["qty"], errors="coerce").fillna(0.0)

    # 2) Forecast per product
    out = []
    H = max(1, int(horizon_months))
    for pid, g in df.groupby("product_id"):
        s = (g.set_index("date")["qty"].resample("MS").sum().asfreq("MS").fillna(0.0))
        m = Prophet(yearly_seasonality=True, weekly_seasonality=False, daily_seasonality=False, n_changepoints=10)
        m.fit(pd.DataFrame({"ds": s.index, "y": s.values}))
        future = m.make_future_dataframe(periods=H, freq="MS", include_history=False)
        pred = m.predict(future)[["ds", "yhat"]]
        for _, r in pred.iterrows():
            out.append({"product_id": str(pid), "period_start": r["ds"].strftime("%Y-%m-%d"), "forecast_qty": float(r["yhat"])})
    return json.dumps(out)


@tool
def optimize_supply_tool(forecast_json: str) -> str:
    """
    Optimize a single-month supply plan (LP) using the forecast.

    Args:
        forecast_json (str): JSON string returned by forecast_tool.

    Returns:
        str: JSON with summary + readable tables (not raw solver output).
    """
    from scipy.optimize import linprog

    rows = json.loads(forecast_json)
    # Use first month per product
    demand = {}
    for r in rows:
        p = r["product_id"]
        if p not in demand:
            demand[p] = float(r["forecast_qty"])

    P = sorted(demand.keys()) or ["FG100", "FG200"]
    price = {"FG100": 98.0, "FG200": 120.0}
    conv  = {"FG100": 12.5, "FG200": 15.0}
    r1    = {"FG100": 0.03, "FG200": 0.05}
    r2    = {"FG100": 0.02, "FG200": 0.01}

    RMs = ["RM_A", "RM_B"]
    rm_cost = {"RM_A": 20.0, "RM_B": 30.0}
    rm_start = {"RM_A": 1000.0, "RM_B": 100.0}
    rm_cap   = {"RM_A": 5000.0, "RM_B": 5000.0}
    bom = {
        "FG100": {"RM_A": 0.8, "RM_B": 0.2 * 1.02},
        "FG200": {"RM_A": 1.0, "RM_B": 0.1},
    }
    r1_cap, r2_cap = 320.0, 480.0

    nP, nR = len(P), len(RMs)
    pidx = {p:i for i,p in enumerate(P)}
    ridx = {r:i for i,r in enumerate(RMs)}

    def i_prod(p): return pidx[p]
    def i_sell(p): return nP + pidx[p]
    def i_einv(p): return 2*nP + pidx[p]
    def i_pur(r):  return 3*nP + ridx[r]
    def i_einr(r): return 3*nP + nR + ridx[r]

    n_vars = 3*nP + 2*nR
    c = np.zeros(n_vars)
    bounds = [None]*n_vars

    for p in P:
        c[i_prod(p)] += conv[p]
        c[i_sell(p)] -= price[p]
        c[i_einv(p)] += 0.0
        bounds[i_prod(p)] = (0, None)
        bounds[i_sell(p)] = (0, demand[p])  # demand as an upper bound (no backorders)
        bounds[i_einv(p)] = (0, None)
    for r in RMs:
        c[i_pur(r)]  += rm_cost[r]
        c[i_einr(r)] += 0.0
        bounds[i_pur(r)]  = (0, rm_cap[r])
        bounds[i_einr(r)] = (0, None)

    # Equalities
    Aeq, beq = [], []
    for p in P:
        row = np.zeros(n_vars); row[i_prod(p)]=1; row[i_sell(p)]=-1; row[i_einv(p)]=-1
        Aeq.append(row); beq.append(0.0)  # start_inv=0 in this demo
    for r in RMs:
        row = np.zeros(n_vars); row[i_pur(r)]=1; row[i_einr(r)]=-1
        for p in P: row[i_prod(p)] -= bom[p].get(r,0.0)
        Aeq.append(row); beq.append(-rm_start[r])

    # Inequalities (resources)
    Aub, bub = [], []
    row = np.zeros(n_vars);  [row.__setitem__(i_prod(p), r1[p]) for p in P];  Aub.append(row); bub.append(r1_cap)
    row = np.zeros(n_vars);  [row.__setitem__(i_prod(p), r2[p]) for p in P];  Aub.append(row); bub.append(r2_cap)

    res = linprog(c, A_ub=np.array(Aub), b_ub=np.array(bub), A_eq=np.array(Aeq), b_eq=np.array(beq),
                  bounds=bounds, method="highs")
    if not res.success:
        return json.dumps({"status": "FAILED", "message": res.message})

    x = res.x
    def v(idx): return float(x[idx])

    # Compose human-friendly tables
    prod_tbl = []
    revenue = 0.0; conv_cost = 0.0
    for p in P:
        produce = v(i_prod(p)); sell = v(i_sell(p))
        prod_tbl.append({"Product": p, "Produce": produce, "Sell": sell, "Unit Price": price[p], "Conv. Cost/u": conv[p]})
        revenue += sell*price[p]; conv_cost += produce*conv[p]

    raw_tbl = []
    rm_purch_cost = 0.0
    for r in RMs:
        purchase = v(i_pur(r))
        cons = float(sum(bom[p].get(r,0.0)*v(i_prod(p)) for p in P))
        cost = purchase*rm_cost[r]; rm_purch_cost += cost
        raw_tbl.append({"Raw": r, "Purchase": purchase, "Consume": cons, "Cost/u": rm_cost[r], "Total Cost": cost})

    r1_used = float(sum(r1[p]*v(i_prod(p)) for p in P))
    r2_used = float(sum(r2[p]*v(i_prod(p)) for p in P))
    res_tbl = [
        {"Resource": "R1", "Used": r1_used, "Cap": r1_cap, "Slack": r1_cap - r1_used},
        {"Resource": "R2", "Used": r2_used, "Cap": r2_cap, "Slack": r2_cap - r2_used},
    ]
    profit = revenue - conv_cost - rm_purch_cost

    out = {
        "status": "OPTIMAL",
        "kpis": {"Profit": profit, "Revenue": revenue, "Conv. Cost": conv_cost, "RM Purchase Cost": rm_purch_cost},
        "products": prod_tbl,
        "raw_materials": raw_tbl,
        "resources": res_tbl
    }
    return json.dumps(out)


@tool
def update_sap_md61_tool(forecast_json: str, plant: str = "PLANT01", uom: str = "EA", mrp_area: str = "") -> str:
    """
    Prepare an MD61-style demand upload (SIMULATION ONLY).

    Args:
        forecast_json (str): JSON string returned by forecast_tool.
        plant (str): SAP plant (WERKS). Defaults to 'PLANT01'.
        uom (str): Unit of measure. Defaults to 'EA'.
        mrp_area (str): Optional MRP area.

    Returns:
        str: JSON with {"status":"SIMULATED","csv_path":"...","preview":[...]}.
    """
    rows = json.loads(forecast_json)
    md61 = [{
        "Material": r["product_id"], "Plant": plant, "MRP_Area": mrp_area,
        "Req_Date": r["period_start"], "Req_Qty": float(r["forecast_qty"]),
        "UoM": uom, "Version": "00"
    } for r in rows]
    df = pd.DataFrame(md61)
    tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
    df.to_csv(tmp.name, index=False)
    return json.dumps({"status": "SIMULATED", "csv_path": tmp.name, "preview": md61[:5]})


# ==== Agent (end-to-end) ======================================================
def make_agent():
    api_key = os.environ.get("OPENAI_API_KEY", "")
    if not api_key:
        raise RuntimeError("OPENAI_API_KEY not set. Add it as a Space secret.")
    model = OpenAIServerModel(model_id="gpt-4o-mini", api_key=api_key, temperature=0)
    return CodeAgent(tools=[forecast_tool, optimize_supply_tool, update_sap_md61_tool],
                     model=model, add_base_tools=False, stream_outputs=False)

SYSTEM_PLAN = (
    "Run the pipeline and return one JSON:\n"
    "1) forecast_tool(...)\n"
    "2) optimize_supply_tool(forecast_json)\n"
    "3) update_sap_md61_tool(forecast_json, ...)\n"
    "Return: {'forecast': <json>, 'plan': <json>, 'md61': <json>}"
)

def run_agentic(h, plant, demo_flag, file_obj):
    agent = make_agent()
    if file_obj is not None:
        path = file_obj.name
        prompt = (f"{SYSTEM_PLAN}\n"
                  f"Use forecast_tool(horizon_months={int(h)}, use_demo=False, history_csv_path='{path}'). "
                  f"Then run the other two steps as specified. Return only the final JSON.")
    else:
        prompt = (f"{SYSTEM_PLAN}\n"
                  f"Use forecast_tool(horizon_months={int(h)}, use_demo={bool(demo_flag)}). "
                  f"Then run the other two steps as specified. Return only the final JSON.")
    return agent.run(prompt)


# ==== UI Helpers (rounding + pretty) =========================================
def _round_df(df: pd.DataFrame, places: int = 2) -> pd.DataFrame:
    if df is None or df.empty:
        return df
    out = df.copy()
    num_cols = out.select_dtypes(include=["number"]).columns
    out[num_cols] = out[num_cols].astype(float).round(places)
    return out

def parse_forecast(json_str):
    df = pd.DataFrame(json.loads(json_str))
    df = df[["product_id","period_start","forecast_qty"]].rename(columns={
        "product_id":"Product","period_start":"Period Start","forecast_qty":"Forecast Qty"
    })
    return _round_df(df)

def parse_plan(json_str):
    d = json.loads(json_str)
    kpis = pd.DataFrame([d["kpis"]]).rename(columns={
        "Conv. Cost":"Conversion Cost", "RM Purchase Cost":"RM Purchase Cost"
    })
    prod = pd.DataFrame(d["products"])
    raw  = pd.DataFrame(d["raw_materials"])
    res  = pd.DataFrame(d["resources"])
    return d["status"], _round_df(kpis), _round_df(prod), _round_df(raw), _round_df(res)

def parse_md61(json_str):
    d = json.loads(json_str)
    prev = _round_df(pd.DataFrame(d.get("preview", [])))
    path = d.get("csv_path", "")
    return d.get("status",""), prev, path


# ==== Gradio UI ==============================================================
with gr.Blocks(title="Forecast β†’ Optimize β†’ SAP MD61") as demo:
    gr.Markdown("## 🧭 Workflow\n"
                "### 1) **Forecast** β†’ 2) **Optimize Supply** β†’ 3) **Prepare MD61**\n"
                "Run them **manually** below, or use the **agent** to do end-to-end in one click.")

    with gr.Tab("Manual (Step-by-step)"):
        with gr.Row():
            horizon = gr.Number(label="Horizon (months)", value=1, precision=0)
            plant   = gr.Textbox(label="SAP Plant (WERKS)", value="PLANT01")
        with gr.Row():
            use_demo = gr.Checkbox(label="Use demo synthetic history", value=True)
            file = gr.File(label="Or upload history.csv (product_id,date,qty)", file_types=[".csv"])

        # States to pass data between steps
        forecast_state = gr.State("")
        plan_state = gr.State("")
        md61_state = gr.State("")

        gr.Markdown("### ➀ Step 1: Forecast")
        run_f = gr.Button("Run Step 1 β€” Forecast")
        forecast_tbl = gr.Dataframe(label="Forecast (first horizon month per SKU)", interactive=False)
        forecast_note = gr.Markdown("")

        gr.Markdown("### ➀ Step 2: Optimize Supply")
        run_o = gr.Button("Run Step 2 β€” Optimize")
        plan_status = gr.Markdown("")
        plan_kpis   = gr.Dataframe(label="KPIs", interactive=False)
        plan_prod   = gr.Dataframe(label="Products Plan", interactive=False)
        plan_raw    = gr.Dataframe(label="Raw Materials", interactive=False)
        plan_res    = gr.Dataframe(label="Resources", interactive=False)

        gr.Markdown("### ➀ Step 3: Prepare MD61 (Simulated)")
        run_m = gr.Button("Run Step 3 β€” MD61")
        md61_status = gr.Markdown("")
        md61_prev   = gr.Dataframe(label="MD61 Preview", interactive=False)
        md61_file   = gr.File(label="Download CSV", interactive=False)

        # Handlers
        def do_forecast(h, demo_flag, f):
            hist_path = "" if (f is None) else f.name
            fj = forecast_tool(horizon_months=int(h), use_demo=(f is None) and bool(demo_flag),
                               history_csv_path=hist_path)
            df = parse_forecast(fj)
            return fj, df, f"Forecast generated for {df['Product'].nunique()} product(s)."

        run_f.click(do_forecast, inputs=[horizon, use_demo, file], outputs=[forecast_state, forecast_tbl, forecast_note])

        def do_optimize(fj):
            if not fj:
                return "", pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), "⚠️ Run Step 1 first."
            pj = optimize_supply_tool(fj)
            status, kpis, prod, raw, res = parse_plan(pj)
            return pj, kpis, prod, raw, res, f"Optimization status: **{status}**"

        run_o.click(do_optimize, inputs=[forecast_state],
                    outputs=[plan_state, plan_kpis, plan_prod, plan_raw, plan_res, plan_status])

        def do_md61(fj, plant):
            if not fj:
                return "", pd.DataFrame(), None, "⚠️ Run Step 1 first."
            mj = update_sap_md61_tool(fj, plant=plant, uom="EA")
            status, prev, path = parse_md61(mj)
            return mj, prev, path, f"MD61 status: **{status}**"

        run_m.click(do_md61, inputs=[forecast_state, plant], outputs=[md61_state, md61_prev, md61_file, md61_status])

    with gr.Tab("Agentic (End-to-end)"):
        gr.Markdown("One click: the agent runs all three steps with OpenAI.")
        with gr.Row():
            a_horizon = gr.Number(label="Horizon (months)", value=1, precision=0)
            a_plant   = gr.Textbox(label="SAP Plant (WERKS)", value="PLANT01")
        with gr.Row():
            a_demo = gr.Checkbox(label="Use demo synthetic history", value=True)
            a_file = gr.File(label="Or upload history.csv", file_types=[".csv"])
        run_all = gr.Button("Run End-to-end (Agent)")
        out_json = gr.Textbox(label="Agent Raw JSON (for inspection)", lines=6)
        with gr.Accordion("Pretty Outputs", open=True):
            a_forecast_tbl = gr.Dataframe(label="Forecast", interactive=False)
            a_plan_kpis = gr.Dataframe(label="KPIs", interactive=False)
            a_plan_prod = gr.Dataframe(label="Products Plan", interactive=False)
            a_plan_raw  = gr.Dataframe(label="Raw Materials", interactive=False)
            a_plan_res  = gr.Dataframe(label="Resources", interactive=False)
            a_md61_prev = gr.Dataframe(label="MD61 Preview", interactive=False)
            a_md61_file = gr.File(label="Download MD61 CSV", interactive=False)

        # Robust agent handler: accepts dict OR str and rounds outputs
        def do_agent(h, p, demo_flag, f):
            def to_obj(x):
                return x if isinstance(x, (dict, list)) else json.loads(x)
            def to_str(x):
                return x if isinstance(x, str) else json.dumps(x)

            try:
                res = run_agentic(h, p, demo_flag, f)   # may be dict or str
                out = to_obj(res)

                forecast_json = to_str(out["forecast"])
                plan_json     = to_str(out["plan"])
                md61_json     = to_str(out["md61"])

                f_df = parse_forecast(forecast_json)
                _, kpis, prod, raw, res_tbl = parse_plan(plan_json)
                _, prev, csv_path = parse_md61(md61_json)

                pretty = {
                    "forecast": json.loads(forecast_json),
                    "plan": json.loads(plan_json),
                    "md61": json.loads(md61_json),
                }
                return (json.dumps(pretty, indent=2), f_df, kpis, prod, raw, res_tbl, prev, csv_path)
            except Exception as e:
                return (f"Agent error: {e}", pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),
                        pd.DataFrame(), pd.DataFrame(), None)

        run_all.click(do_agent, inputs=[a_horizon, a_plant, a_demo, a_file],
                      outputs=[out_json, a_forecast_tbl, a_plan_kpis, a_plan_prod, a_plan_raw, a_plan_res, a_md61_prev, a_md61_file])

if __name__ == "__main__":
    # Needs OPENAI_API_KEY in env for agent tab; manual tab works without it.
    if not os.environ.get("OPENAI_API_KEY"):
        print("⚠️  Set OPENAI_API_KEY (Space secret) to use Agentic tab.")
    demo.launch()