Update app.py
Browse files
app.py
CHANGED
|
@@ -445,64 +445,58 @@ def plan_explainer_tool(plan_json: str) -> str:
|
|
| 445 |
def bottleneck_search_tool(forecast_json: str, policy_json: str = "") -> str:
|
| 446 |
"""
|
| 447 |
Find the best practical lever to relax (within ~1 month) via small scenario probes.
|
|
|
|
| 448 |
|
| 449 |
Args:
|
| 450 |
forecast_json (str): JSON from forecast_tool (first month per SKU used).
|
| 451 |
-
policy_json (str): Optional JSON with
|
| 452 |
-
Defaults include overtime and RM expedite; blocks factory expansion.
|
| 453 |
|
| 454 |
Returns:
|
| 455 |
-
str: JSON {"status":"OK","recommendations":[
|
| 456 |
"""
|
|
|
|
|
|
|
|
|
|
| 457 |
# --- Defaults (edit to your reality) ---
|
| 458 |
policy = {
|
| 459 |
-
"R1_overtime":
|
| 460 |
-
"R2_overtime":
|
| 461 |
"RM_A_expedite": {"type":"rm_expedite","target":"RM_A","step":200.0,"max_delta":1500.0,"unit_premium":8.0},
|
| 462 |
"RM_B_expedite": {"type":"rm_expedite","target":"RM_B","step":100.0,"max_delta":800.0,"unit_premium":12.0},
|
| 463 |
"Factory_expansion": {"type":"blocked","reason":"Not relaxable within 1 month"}
|
|
|
|
|
|
|
| 464 |
}
|
| 465 |
if policy_json:
|
| 466 |
-
try:
|
| 467 |
-
|
| 468 |
-
except Exception:
|
| 469 |
-
pass
|
| 470 |
-
|
| 471 |
-
# --- 1) Baseline solve ---
|
| 472 |
-
base_plan = json.loads(optimize_supply_tool(forecast_json))
|
| 473 |
-
if base_plan.get("status") != "OPTIMAL":
|
| 474 |
-
return json.dumps({"status":"FAILED","message":"Baseline plan not optimal."})
|
| 475 |
-
base_profit = float(base_plan["kpis"]["Profit"])
|
| 476 |
-
|
| 477 |
-
# --- 2) Helper to run a perturbed solve ---
|
| 478 |
-
def run_with(delta_map):
|
| 479 |
-
from scipy.optimize import linprog
|
| 480 |
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
conv = {"FG100":12.5,"FG200":15.0}
|
| 490 |
-
r1 = {"FG100":0.03,"FG200":0.05}
|
| 491 |
-
r2 = {"FG100":0.02,"FG200":0.01}
|
| 492 |
-
RMs = ["RM_A","RM_B"]
|
| 493 |
-
rm_cost = {"RM_A":20.0,"RM_B":30.0}
|
| 494 |
-
rm_start = {"RM_A":1000.0,"RM_B":100.0}
|
| 495 |
-
rm_cap = {"RM_A":5000.0,"RM_B":5000.0}
|
| 496 |
-
bom = {"FG100":{"RM_A":0.8,"RM_B":0.204},"FG200":{"RM_A":1.0,"RM_B":0.1}}
|
| 497 |
-
|
| 498 |
-
# Apply deltas
|
| 499 |
-
r1_cap = 320.0 + delta_map.get("R1_cap",0.0)
|
| 500 |
-
r2_cap = 480.0 + delta_map.get("R2_cap",0.0)
|
| 501 |
-
rm_cap_adj = {
|
| 502 |
-
"RM_A": rm_cap["RM_A"] + delta_map.get("RM_A_cap",0.0),
|
| 503 |
-
"RM_B": rm_cap["RM_B"] + delta_map.get("RM_B_cap",0.0),
|
| 504 |
-
}
|
| 505 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
nP, nR = len(P), len(RMs)
|
| 507 |
pidx = {p:i for i,p in enumerate(P)}; ridx = {r:i for i,r in enumerate(RMs)}
|
| 508 |
def i_prod(p): return pidx[p]
|
|
@@ -510,6 +504,7 @@ def bottleneck_search_tool(forecast_json: str, policy_json: str = "") -> str:
|
|
| 510 |
def i_einv(p): return 2*nP + pidx[p]
|
| 511 |
def i_pur(r): return 3*nP + ridx[r]
|
| 512 |
def i_einr(r): return 3*nP + nR + ridx[r]
|
|
|
|
| 513 |
n_vars = 3*nP + 2*nR
|
| 514 |
c = np.zeros(n_vars); bounds=[None]*n_vars
|
| 515 |
|
|
@@ -517,7 +512,7 @@ def bottleneck_search_tool(forecast_json: str, policy_json: str = "") -> str:
|
|
| 517 |
c[i_prod(p)] += conv[p]
|
| 518 |
c[i_sell(p)] -= price[p]
|
| 519 |
bounds[i_prod(p)] = (0,None)
|
| 520 |
-
bounds[i_sell(p)] = (0,
|
| 521 |
bounds[i_einv(p)] = (0,None)
|
| 522 |
for r in RMs:
|
| 523 |
c[i_pur(r)] += rm_cost[r]
|
|
@@ -543,54 +538,86 @@ def bottleneck_search_tool(forecast_json: str, policy_json: str = "") -> str:
|
|
| 543 |
return None
|
| 544 |
x = res.x
|
| 545 |
def v(idx): return float(x[idx])
|
|
|
|
| 546 |
revenue = sum(price[p]*v(i_sell(p)) for p in P)
|
| 547 |
conv_cost = sum(conv[p]*v(i_prod(p)) for p in P)
|
| 548 |
rm_purch_cost = sum(v(i_pur(r))*rm_cost[r] for r in RMs)
|
| 549 |
-
|
| 550 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 551 |
|
| 552 |
-
# ---
|
| 553 |
recs = []
|
| 554 |
for name, cfg in policy.items():
|
| 555 |
if cfg.get("type") == "blocked":
|
| 556 |
recs.append({"lever":name,"recommended":0,"est_profit_lift":0,"est_net_gain":0,
|
| 557 |
"rationale":cfg.get("reason","Not feasible in horizon")})
|
| 558 |
continue
|
| 559 |
-
|
| 560 |
-
best_gain = 0.0; best_delta = 0.0;
|
|
|
|
| 561 |
d = 0.0
|
| 562 |
while d <= maxd + 1e-6:
|
| 563 |
-
|
|
|
|
|
|
|
| 564 |
relax_cost = 0.0
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
elif cfg["
|
| 570 |
-
|
| 571 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 572 |
else:
|
| 573 |
d += step; continue
|
| 574 |
|
| 575 |
-
|
| 576 |
-
if
|
| 577 |
d += step; continue
|
| 578 |
-
lift =
|
| 579 |
net = lift - relax_cost
|
| 580 |
if net > best_gain:
|
| 581 |
-
best_gain, best_delta,
|
| 582 |
d += step
|
| 583 |
|
| 584 |
-
rationale = ("Beneficial at small Δ" if best_gain>0 else
|
| 585 |
-
|
| 586 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 587 |
|
| 588 |
recs.sort(key=lambda r: r["est_net_gain"], reverse=True)
|
| 589 |
-
|
| 590 |
-
for k in ["recommended","est_profit_lift","est_net_gain"]:
|
| 591 |
-
if r[k] is not None:
|
| 592 |
-
r[k] = round(float(r[k]), 2)
|
| 593 |
-
return json.dumps({"status":"OK","recommendations":recs})
|
| 594 |
|
| 595 |
# ==== Agent (end-to-end) ======================================================
|
| 596 |
def make_agent():
|
|
|
|
| 445 |
def bottleneck_search_tool(forecast_json: str, policy_json: str = "") -> str:
|
| 446 |
"""
|
| 447 |
Find the best practical lever to relax (within ~1 month) via small scenario probes.
|
| 448 |
+
Supports resource overtime, RM expedite (cap), and demand_lift (promo ROI-checked).
|
| 449 |
|
| 450 |
Args:
|
| 451 |
forecast_json (str): JSON from forecast_tool (first month per SKU used).
|
| 452 |
+
policy_json (str): Optional JSON with levers and costs.
|
|
|
|
| 453 |
|
| 454 |
Returns:
|
| 455 |
+
str: JSON {"status":"OK","diagnostics":{...},"recommendations":[...]}
|
| 456 |
"""
|
| 457 |
+
import json, numpy as np
|
| 458 |
+
from scipy.optimize import linprog
|
| 459 |
+
|
| 460 |
# --- Defaults (edit to your reality) ---
|
| 461 |
policy = {
|
| 462 |
+
"R1_overtime": {"type":"resource","target":"R1","step":10.0,"max_delta":80.0,"unit_cost":600.0},
|
| 463 |
+
"R2_overtime": {"type":"resource","target":"R2","step":10.0,"max_delta":40.0,"unit_cost":800.0},
|
| 464 |
"RM_A_expedite": {"type":"rm_expedite","target":"RM_A","step":200.0,"max_delta":1500.0,"unit_premium":8.0},
|
| 465 |
"RM_B_expedite": {"type":"rm_expedite","target":"RM_B","step":100.0,"max_delta":800.0,"unit_premium":12.0},
|
| 466 |
"Factory_expansion": {"type":"blocked","reason":"Not relaxable within 1 month"}
|
| 467 |
+
# You can add demand levers via policy_json:
|
| 468 |
+
# "promo_FG100": {"type":"demand_lift","target":"FG100","step":100,"max_delta":600,"unit_cost":10}
|
| 469 |
}
|
| 470 |
if policy_json:
|
| 471 |
+
try: policy.update(json.loads(policy_json))
|
| 472 |
+
except Exception: pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 473 |
|
| 474 |
+
# --- Problem primitives (same as your optimizer) ---
|
| 475 |
+
rows = json.loads(forecast_json)
|
| 476 |
+
demand = {}
|
| 477 |
+
for r in rows:
|
| 478 |
+
p = r["product_id"]
|
| 479 |
+
if p not in demand:
|
| 480 |
+
demand[p] = float(r["forecast_qty"])
|
| 481 |
+
P = sorted(demand.keys()) or ["FG100","FG200"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 482 |
|
| 483 |
+
price = {"FG100":98.0,"FG200":120.0}
|
| 484 |
+
conv = {"FG100":12.5,"FG200":15.0}
|
| 485 |
+
r1 = {"FG100":0.03,"FG200":0.05}
|
| 486 |
+
r2 = {"FG100":0.02,"FG200":0.01}
|
| 487 |
+
RMs = ["RM_A","RM_B"]
|
| 488 |
+
rm_cost = {"RM_A":20.0,"RM_B":30.0}
|
| 489 |
+
rm_start = {"RM_A":1000.0,"RM_B":100.0}
|
| 490 |
+
rm_cap = {"RM_A":5000.0,"RM_B":5000.0}
|
| 491 |
+
bom = {"FG100":{"RM_A":0.8,"RM_B":0.204},"FG200":{"RM_A":1.0,"RM_B":0.1}}
|
| 492 |
+
r1_cap0, r2_cap0 = 320.0, 480.0
|
| 493 |
+
|
| 494 |
+
# Helpful unit margin for demand_lift (approx variable cost)
|
| 495 |
+
unit_var_cost = {p: conv[p] + sum(bom[p].get(rm,0.0)*rm_cost[rm] for rm in RMs) for p in P}
|
| 496 |
+
unit_margin = {p: price[p] - unit_var_cost[p] for p in P}
|
| 497 |
+
|
| 498 |
+
# --- LP builder (inner solve) ---
|
| 499 |
+
def solve(dem, r1_cap, r2_cap, rm_cap_adj):
|
| 500 |
nP, nR = len(P), len(RMs)
|
| 501 |
pidx = {p:i for i,p in enumerate(P)}; ridx = {r:i for i,r in enumerate(RMs)}
|
| 502 |
def i_prod(p): return pidx[p]
|
|
|
|
| 504 |
def i_einv(p): return 2*nP + pidx[p]
|
| 505 |
def i_pur(r): return 3*nP + ridx[r]
|
| 506 |
def i_einr(r): return 3*nP + nR + ridx[r]
|
| 507 |
+
|
| 508 |
n_vars = 3*nP + 2*nR
|
| 509 |
c = np.zeros(n_vars); bounds=[None]*n_vars
|
| 510 |
|
|
|
|
| 512 |
c[i_prod(p)] += conv[p]
|
| 513 |
c[i_sell(p)] -= price[p]
|
| 514 |
bounds[i_prod(p)] = (0,None)
|
| 515 |
+
bounds[i_sell(p)] = (0, dem[p])
|
| 516 |
bounds[i_einv(p)] = (0,None)
|
| 517 |
for r in RMs:
|
| 518 |
c[i_pur(r)] += rm_cost[r]
|
|
|
|
| 538 |
return None
|
| 539 |
x = res.x
|
| 540 |
def v(idx): return float(x[idx])
|
| 541 |
+
|
| 542 |
revenue = sum(price[p]*v(i_sell(p)) for p in P)
|
| 543 |
conv_cost = sum(conv[p]*v(i_prod(p)) for p in P)
|
| 544 |
rm_purch_cost = sum(v(i_pur(r))*rm_cost[r] for r in RMs)
|
| 545 |
+
r1_used = sum(r1[p]*v(i_prod(p)) for p in P)
|
| 546 |
+
r2_used = sum(r2[p]*v(i_prod(p)) for p in P)
|
| 547 |
+
return {
|
| 548 |
+
"profit": revenue - conv_cost - rm_purch_cost,
|
| 549 |
+
"r1_used": r1_used, "r2_used": r2_used,
|
| 550 |
+
}
|
| 551 |
+
|
| 552 |
+
# Baseline
|
| 553 |
+
base = solve(demand, r1_cap0, r2_cap0, rm_cap.copy())
|
| 554 |
+
if base is None:
|
| 555 |
+
return json.dumps({"status":"FAILED","message":"Baseline infeasible."})
|
| 556 |
+
base_profit = float(base["profit"])
|
| 557 |
+
diag = {
|
| 558 |
+
"demand_met": True, # sells hit demand ceiling in this model
|
| 559 |
+
"r1_slack": round(r1_cap0 - base["r1_used"], 2),
|
| 560 |
+
"r2_slack": round(r2_cap0 - base["r2_used"], 2),
|
| 561 |
+
"rm_caps_hit": {rm: False for rm in RMs}
|
| 562 |
+
}
|
| 563 |
+
# If everything is slack, tell the user plainly
|
| 564 |
+
all_slack = (diag["r1_slack"] > 1e-3 and diag["r2_slack"] > 1e-3)
|
| 565 |
|
| 566 |
+
# --- Probe levers ---
|
| 567 |
recs = []
|
| 568 |
for name, cfg in policy.items():
|
| 569 |
if cfg.get("type") == "blocked":
|
| 570 |
recs.append({"lever":name,"recommended":0,"est_profit_lift":0,"est_net_gain":0,
|
| 571 |
"rationale":cfg.get("reason","Not feasible in horizon")})
|
| 572 |
continue
|
| 573 |
+
|
| 574 |
+
best_gain = 0.0; best_delta = 0.0; best_lift = 0.0
|
| 575 |
+
step = float(cfg.get("step",0)); maxd = float(cfg.get("max_delta",0))
|
| 576 |
d = 0.0
|
| 577 |
while d <= maxd + 1e-6:
|
| 578 |
+
dem = demand.copy()
|
| 579 |
+
r1_cap = r1_cap0; r2_cap = r2_cap0
|
| 580 |
+
rm_cap_adj = rm_cap.copy()
|
| 581 |
relax_cost = 0.0
|
| 582 |
+
|
| 583 |
+
t = cfg["type"]
|
| 584 |
+
if t == "resource" and cfg["target"] == "R1":
|
| 585 |
+
r1_cap += d; relax_cost = d * float(cfg["unit_cost"])
|
| 586 |
+
elif t == "resource" and cfg["target"] == "R2":
|
| 587 |
+
r2_cap += d; relax_cost = d * float(cfg["unit_cost"])
|
| 588 |
+
elif t == "rm_expedite":
|
| 589 |
+
key = "RM_A" if cfg["target"]=="RM_A" else "RM_B"
|
| 590 |
+
rm_cap_adj[key] = rm_cap[key] + d
|
| 591 |
+
relax_cost = d * float(cfg["unit_premium"])
|
| 592 |
+
elif t == "demand_lift":
|
| 593 |
+
sku = cfg["target"]
|
| 594 |
+
if sku in dem:
|
| 595 |
+
dem[sku] = dem[sku] + d
|
| 596 |
+
relax_cost = d * float(cfg["unit_cost"])
|
| 597 |
+
else:
|
| 598 |
+
d += step; continue
|
| 599 |
else:
|
| 600 |
d += step; continue
|
| 601 |
|
| 602 |
+
res = solve(dem, r1_cap, r2_cap, rm_cap_adj)
|
| 603 |
+
if res is None:
|
| 604 |
d += step; continue
|
| 605 |
+
lift = float(res["profit"] - base_profit)
|
| 606 |
net = lift - relax_cost
|
| 607 |
if net > best_gain:
|
| 608 |
+
best_gain, best_delta, best_lift = net, d, lift
|
| 609 |
d += step
|
| 610 |
|
| 611 |
+
rationale = ("Beneficial at small Δ" if best_gain>0 else
|
| 612 |
+
("Capacity not binding; try demand/cost levers" if all_slack else
|
| 613 |
+
"No positive net gain within feasible range"))
|
| 614 |
+
recs.append({"lever":name,"recommended":round(best_delta,2),
|
| 615 |
+
"est_profit_lift":round(best_lift,2),
|
| 616 |
+
"est_net_gain":round(best_gain,2),
|
| 617 |
+
"rationale":rationale})
|
| 618 |
|
| 619 |
recs.sort(key=lambda r: r["est_net_gain"], reverse=True)
|
| 620 |
+
return json.dumps({"status":"OK","diagnostics":diag,"recommendations":recs})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 621 |
|
| 622 |
# ==== Agent (end-to-end) ======================================================
|
| 623 |
def make_agent():
|