File size: 5,043 Bytes
232cf32
d246e35
 
 
 
5ad1055
 
d246e35
ee69716
d246e35
62f378c
d246e35
5ad1055
 
 
 
0343654
5ad1055
8bb36eb
5ad1055
d246e35
 
ee69716
c18214e
ee69716
c18214e
 
ee69716
c18214e
 
d246e35
ee69716
e7fa0b8
5ad1055
d246e35
0ee7bd2
 
d246e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0343654
 
5ad1055
 
d246e35
 
 
 
 
 
 
5ad1055
 
 
d246e35
 
 
 
 
 
 
 
 
 
 
5ad1055
d246e35
 
 
 
 
 
 
 
 
5ad1055
d246e35
 
 
 
 
 
 
 
5ad1055
0ae001f
 
d246e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ad1055
d246e35
 
49c66dd
d246e35
5ad1055
d246e35
 
5ad1055
d246e35
 
49c66dd
d246e35
 
 
 
 
 
c18214e
d246e35
0ae001f
d246e35
 
 
 
 
c18214e
d246e35
0ae001f
d246e35
 
 
 
 
ee69716
d246e35
 
 
 
 
 
 
 
 
 
 
 
 
 
5ad1055
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#no oom?
import gradio as gr
import numpy as np
import random

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
targets = {"pussy", "boobs", "breasts", "vagina", "penis", "sex", "oral", "anal", "butt", "ass"}
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/spicy-realism-nsfw-mix-v30-sdxl"  # Replace to the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
print(pipe)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
from PIL import Image
def safe_infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_steps):
    clean = ''.join(c for c in prompt.lower() if c.isalnum() or c.isspace())
    if any(word in clean for word in targets):
        print("Found at least one banned word!")
        blank = Image.new("RGB", (width, height), (0, 0, 0))
        return blank, seed

    return infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_steps)

# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value = "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn,  (breasts:3), (nipple:3), (nipples:3), (boobs:3), (butt:3), (ass:3), (butthole:3), (sex:3), (fetish:3), (pussy:3), (vagina:3), (porn:3), (hentai:3), (explicit:3)",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=64,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=384,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=64,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=384,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=3.6,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=80,
                    step=1,
                    value=15,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=safe_infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()