File size: 25,640 Bytes
e181cae 19198ae e181cae 67a974c c314b04 d4bbbae 491fe1d d4bbbae c314b04 e181cae 67a974c e181cae 67a974c e181cae 67a974c 017ba11 e181cae 67a974c e181cae 491fe1d 67a974c e181cae aca3bcc e181cae 67a974c e181cae 67a974c e181cae 67a974c e181cae 67a974c e181cae 67a974c e181cae 67a974c e181cae 67a974c e181cae 67a974c e181cae 67a974c e181cae e1e0353 e181cae 67a974c e181cae 67a974c e181cae 67a974c e181cae 67a974c e181cae 67a974c e181cae 67a974c e181cae 6f9e54c e181cae 3fec25d e181cae 67a974c e181cae b0eef72 5dc3610 e181cae 103eee6 e181cae 5dc3610 e181cae 5dc3610 e181cae 5dc3610 e181cae 0e56fdd ab08b11 103eee6 e181cae 67a974c 6f7cafb e181cae 103eee6 e181cae 103eee6 e181cae 103eee6 e181cae 103eee6 e181cae 103eee6 e181cae 103eee6 e181cae 67a974c e181cae 103eee6 e181cae 67a974c e181cae 6a3d054 e181cae 6a3d054 e181cae 67a974c 3fd0326 630075f 3fd0326 630075f 3fd0326 630075f 3fd0326 630075f 3fd0326 630075f 3fd0326 630075f 3fd0326 630075f 3fd0326 630075f 3fd0326 630075f 3fd0326 630075f 3fd0326 630075f 3fd0326 630075f e181cae 103eee6 e181cae a1a68a8 e181cae 67a974c e181cae 67a974c e181cae a1a68a8 e181cae a1a68a8 e181cae aca3bcc e181cae a1ea72a e181cae 67a974c e181cae a1a68a8 e181cae a1ea72a e181cae aca3bcc e181cae 687894c e181cae 67a974c e181cae 103eee6 e181cae 103eee6 e181cae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 |
import os
import time
import random
import gradio as gr
import cv2
import numpy as np
from PIL import Image
import subprocess
import importlib
def ensure_wan():
try:
import wan # noqa
print("[setup] wan already installed.")
except ImportError:
cmd = "pip install --no-build-isolation 'wan@git+https://github.com/Wan-Video/Wan2.1'"
env = dict(os.environ)
print(f"[setup] Installing wan2.1: {cmd}")
subprocess.run(cmd, shell=True, check=True, env=env)
def ensure_flash_attn():
try:
import flash_attn # noqa
from flash_attn.flash_attn_interface import flash_attn_func # type: ignore
print("[setup] flash-attn seems OK.")
return
except Exception as e:
print("[setup] flash-attn broken, will rebuild from source:", repr(e))
cmd = (
"pip uninstall -y flash-attn flash_attn || true && "
"pip install flash-attn==2.7.2.post1 --no-build-isolation"
)
print(f"[setup] Rebuilding flash-attn: {cmd}")
subprocess.run(cmd, shell=True, check=True)
importlib.invalidate_caches()
ensure_flash_attn()
ensure_wan()
os.makedirs("./sam2/SAM2-Video-Predictor/checkpoints/", exist_ok=True)
from huggingface_hub import snapshot_download
def download_sam2():
snapshot_download(
repo_id="facebook/sam2-hiera-large",
local_dir="./sam2/SAM2-Video-Predictor/checkpoints/",
)
print("Download sam2 completed")
def download_refacade():
snapshot_download(
repo_id="fishze/Refacade",
local_dir="./models/",
)
print("Download refacade completed")
download_sam2()
download_refacade()
import torch
import torch.nn.functional as F
from decord import VideoReader, cpu
from moviepy.editor import ImageSequenceClip
from sam2.build_sam import build_sam2, build_sam2_video_predictor
from sam2.sam2_image_predictor import SAM2ImagePredictor
import spaces
from pipeline import RefacadePipeline
from vace.models.wan.modules.model_mm import VaceMMModel
from vace.models.wan.modules.model_tr import VaceWanModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from wan.text2video import FlowUniPCMultistepScheduler
from diffusers.utils import export_to_video, load_image, load_video
from vae import WanVAE
COLOR_PALETTE = [
(255, 0, 0),
(0, 255, 0),
(0, 0, 255),
(255, 255, 0),
(255, 0, 255),
(0, 255, 255),
(255, 128, 0),
(128, 0, 255),
(0, 128, 255),
(128, 255, 0),
]
video_length = 81
W = 1024
H = W
device = "cuda"
sam_device = "cpu"
def get_pipe_image_and_video_predictor():
vae = WanVAE(
vae_pth="./models/vae/Wan2.1_VAE.pth",
dtype=torch.float16,
)
pipe_device = "cuda"
texture_remover = VaceWanModel.from_config(
"./models/texture_remover/texture_remover.json"
)
ckpt = torch.load(
"./models/texture_remover/texture_remover.pth",
map_location="cpu",
)
texture_remover.load_state_dict(ckpt)
texture_remover = texture_remover.to(dtype=torch.float16, device=pipe_device)
model = VaceMMModel.from_config(
"./models/refacade/refacade.json"
)
ckpt = torch.load(
"./models/refacade/refacade.pth",
map_location="cpu",
)
model.load_state_dict(ckpt)
model = model.to(dtype=torch.float16, device=pipe_device)
sample_scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=1000,
shift=1,
)
pipe = RefacadePipeline(
vae=vae,
transformer=model,
texture_remover=texture_remover,
scheduler=sample_scheduler,
)
pipe.to(pipe_device)
sam2_checkpoint = "./sam2/SAM2-Video-Predictor/checkpoints/sam2_hiera_large.pt"
config = "sam2_hiera_l.yaml"
video_predictor = build_sam2_video_predictor(config, sam2_checkpoint, device=sam_device)
model_sam = build_sam2(config, sam2_checkpoint, device=sam_device)
model_sam.image_size = 1024
image_predictor = SAM2ImagePredictor(sam_model=model_sam)
return pipe, image_predictor, video_predictor
def get_video_info(video_path, video_state):
video_state["input_points"] = []
video_state["scaled_points"] = []
video_state["input_labels"] = []
video_state["frame_idx"] = 0
vr = VideoReader(video_path, ctx=cpu(0))
first_frame = vr[0].asnumpy()
del vr
if first_frame.shape[0] > first_frame.shape[1]:
W_ = W
H_ = int(W_ * first_frame.shape[0] / first_frame.shape[1])
else:
H_ = H
W_ = int(H_ * first_frame.shape[1] / first_frame.shape[0])
first_frame = cv2.resize(first_frame, (W_, H_))
video_state["origin_images"] = np.expand_dims(first_frame, axis=0)
video_state["inference_state"] = None
video_state["video_path"] = video_path
video_state["masks"] = None
video_state["painted_images"] = None
image = Image.fromarray(first_frame)
return image
def segment_frame(evt: gr.SelectData, label, video_state):
if video_state["origin_images"] is None:
return None
x, y = evt.index
new_point = [x, y]
label_value = 1 if label == "Positive" else 0
video_state["input_points"].append(new_point)
video_state["input_labels"].append(label_value)
height, width = video_state["origin_images"][0].shape[0:2]
scaled_points = []
for pt in video_state["input_points"]:
sx = pt[0] / width
sy = pt[1] / height
scaled_points.append([sx, sy])
video_state["scaled_points"] = scaled_points
image_predictor.set_image(video_state["origin_images"][0])
mask, _, _ = image_predictor.predict(
point_coords=video_state["scaled_points"],
point_labels=video_state["input_labels"],
multimask_output=False,
normalize_coords=False,
)
mask = np.squeeze(mask)
mask = cv2.resize(mask, (width, height))
mask = mask[:, :, None]
color = (
np.array(COLOR_PALETTE[int(time.time()) % len(COLOR_PALETTE)], dtype=np.float32)
/ 255.0
)
color = color[None, None, :]
org_image = video_state["origin_images"][0].astype(np.float32) / 255.0
painted_image = (1 - mask * 0.5) * org_image + mask * 0.5 * color
painted_image = np.uint8(np.clip(painted_image * 255, 0, 255))
video_state["painted_images"] = np.expand_dims(painted_image, axis=0)
video_state["masks"] = np.expand_dims(mask[:, :, 0], axis=0)
for i in range(len(video_state["input_points"])):
point = video_state["input_points"][i]
if video_state["input_labels"][i] == 0:
cv2.circle(painted_image, point, radius=3, color=(0, 0, 255), thickness=-1)
else:
cv2.circle(painted_image, point, radius=3, color=(255, 0, 0), thickness=-1)
return Image.fromarray(painted_image)
def clear_clicks(video_state):
video_state["input_points"] = []
video_state["input_labels"] = []
video_state["scaled_points"] = []
video_state["inference_state"] = None
video_state["masks"] = None
video_state["painted_images"] = None
return (
Image.fromarray(video_state["origin_images"][0])
if video_state["origin_images"] is not None
else None
)
def set_ref_image(ref_img, ref_state):
if ref_img is None:
return None
if isinstance(ref_img, Image.Image):
img_np = np.array(ref_img)
else:
img_np = ref_img
ref_state["origin_image"] = img_np
ref_state["input_points"] = []
ref_state["input_labels"] = []
ref_state["scaled_points"] = []
ref_state["mask"] = None
return Image.fromarray(img_np)
def segment_ref_frame(evt: gr.SelectData, label, ref_state):
if ref_state["origin_image"] is None:
return None
x, y = evt.index
new_point = [x, y]
label_value = 1 if label == "Positive" else 0
ref_state["input_points"].append(new_point)
ref_state["input_labels"].append(label_value)
img = ref_state["origin_image"]
h, w = img.shape[:2]
scaled_points = []
for pt in ref_state["input_points"]:
sx = pt[0] / w
sy = pt[1] / h
scaled_points.append([sx, sy])
ref_state["scaled_points"] = scaled_points
image_predictor.set_image(img)
mask, _, _ = image_predictor.predict(
point_coords=scaled_points,
point_labels=ref_state["input_labels"],
multimask_output=False,
normalize_coords=False,
)
mask = np.squeeze(mask)
mask = cv2.resize(mask, (w, h))
mask = mask[:, :, None]
ref_state["mask"] = mask[:, :, 0]
color = (
np.array(COLOR_PALETTE[int(time.time()) % len(COLOR_PALETTE)], dtype=np.float32)
/ 255.0
)
color = color[None, None, :]
org_image = img.astype(np.float32) / 255.0
painted = (1 - mask * 0.5) * org_image + mask * 0.5 * color
painted = np.uint8(np.clip(painted * 255, 0, 255))
for i in range(len(ref_state["input_points"])):
point = ref_state["input_points"][i]
if ref_state["input_labels"][i] == 0:
cv2.circle(painted, point, radius=3, color=(0, 0, 255), thickness=-1)
else:
cv2.circle(painted, point, radius=3, color=(255, 0, 0), thickness=-1)
return Image.fromarray(painted)
def clear_ref_clicks(ref_state):
ref_state["input_points"] = []
ref_state["input_labels"] = []
ref_state["scaled_points"] = []
ref_state["mask"] = None
if ref_state["origin_image"] is None:
return None
return Image.fromarray(ref_state["origin_image"])
@spaces.GPU(duration=40)
@torch.no_grad()
def track_video(n_frames, video_state):
input_points = video_state["input_points"]
input_labels = video_state["input_labels"]
frame_idx = video_state["frame_idx"]
obj_id = video_state["obj_id"]
scaled_points = video_state["scaled_points"]
vr = VideoReader(video_state["video_path"], ctx=cpu(0))
height, width = vr[0].shape[0:2]
images = [vr[i].asnumpy() for i in range(min(len(vr), n_frames))]
del vr
if images[0].shape[0] > images[0].shape[1]:
W_ = W
H_ = int(W_ * images[0].shape[0] / images[0].shape[1])
else:
H_ = H
W_ = int(H_ * images[0].shape[1] / images[0].shape[0])
images = [cv2.resize(img, (W_, H_)) for img in images]
video_state["origin_images"] = images
images_np = np.array(images)
sam2_checkpoint = "./sam2/SAM2-Video-Predictor/checkpoints/sam2_hiera_large.pt"
config = "sam2_hiera_l.yaml"
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
video_predictor_local = build_sam2_video_predictor(
config, sam2_checkpoint, device="cuda"
)
inference_state = video_predictor_local.init_state(
images=images_np / 255, device="cuda"
)
if len(torch.from_numpy(video_state["masks"][0]).shape) == 3:
mask0 = torch.from_numpy(video_state["masks"][0])[:, :, 0]
else:
mask0 = torch.from_numpy(video_state["masks"][0])
video_predictor_local.add_new_mask(
inference_state=inference_state,
frame_idx=0,
obj_id=obj_id,
mask=mask0,
)
output_frames = []
mask_frames = []
color = (
np.array(
COLOR_PALETTE[int(time.time()) % len(COLOR_PALETTE)],
dtype=np.float32,
)
/ 255.0
)
color = color[None, None, :]
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor_local.propagate_in_video(
inference_state
):
frame = images_np[out_frame_idx].astype(np.float32) / 255.0
mask = np.zeros((H, W, 3), dtype=np.float32)
for i, logit in enumerate(out_mask_logits):
out_mask = logit.cpu().squeeze().detach().numpy()
out_mask = (out_mask[:, :, None] > 0).astype(np.float32)
mask += out_mask
mask = np.clip(mask, 0, 1)
mask = cv2.resize(mask, (W_, H_))
mask_frames.append(mask)
painted = (1 - mask * 0.5) * frame + mask * 0.5 * color
painted = np.uint8(np.clip(painted * 255, 0, 255))
output_frames.append(painted)
video_file = f"/tmp/{time.time()}-{random.random()}-tracked_output.mp4"
clip = ImageSequenceClip(output_frames, fps=15)
clip.write_videofile(
video_file, codec="libx264", audio=False, verbose=False, logger=None
)
print("Tracking done")
print("Tracking done, file:", video_file)
try:
exists = os.path.exists(video_file)
size = os.path.getsize(video_file) if exists else -1
print("File exists?", exists, "size:", size)
except Exception as e:
print("Error checking video file:", repr(e))
return video_file, images, mask_frames
@spaces.GPU(duration=100)
def inference_and_return_video(
dilate_radius,
num_inference_steps,
guidance_scale,
ref_patch_ratio,
fg_threshold,
seed,
video_frames,
mask_frames,
ref_state,
):
if video_frames is None or mask_frames is None:
print("No video frames or video masks.")
return None, None, None
if ref_state["origin_image"] is None or ref_state["mask"] is None:
print("Reference image or reference mask missing.")
return None, None, None
images = video_frames
masks = mask_frames
video_frames_pil = []
mask_frames_pil = []
for img, msk in zip(images, masks):
if not isinstance(img, np.ndarray):
img = np.asarray(img)
img_pil = Image.fromarray(img.astype(np.uint8))
if isinstance(msk, np.ndarray):
if msk.ndim == 3:
m2 = msk[..., 0]
else:
m2 = msk
else:
m2 = np.asarray(msk)
m2 = (m2 > 0.5).astype(np.uint8) * 255
msk_pil = Image.fromarray(m2, mode="L")
video_frames_pil.append(img_pil)
mask_frames_pil.append(msk_pil)
num_frames = len(video_frames_pil)
h0, w0 = images[0].shape[:2]
if h0 > w0:
height = 832
width = 480
else:
height = 480
width = 832
ref_img_np = ref_state["origin_image"]
ref_mask_np = ref_state["mask"]
ref_img_pil = Image.fromarray(ref_img_np.astype(np.uint8))
ref_mask_bin = (ref_mask_np > 0.5).astype(np.uint8) * 255
ref_mask_pil = Image.fromarray(ref_mask_bin, mode="L")
pipe.to("cuda")
with torch.no_grad():
retex_frames, mesh_frames, ref_img_out = pipe(
video=video_frames_pil,
mask=mask_frames_pil,
reference_image=ref_img_pil,
reference_mask=ref_mask_pil,
conditioning_scale=1.0,
height=height,
width=width,
num_frames=num_frames,
dilate_radius=int(dilate_radius),
num_inference_steps=int(num_inference_steps),
guidance_scale=float(guidance_scale),
reference_patch_ratio=float(ref_patch_ratio),
fg_thresh=float(fg_threshold),
generator=torch.Generator(device="cuda").manual_seed(seed),
return_dict=False,
)
retex_frames_uint8 = (np.clip(retex_frames[0], 0.0, 1.0) * 255).astype(np.uint8)
mesh_frames_uint8 = (np.clip(mesh_frames[0], 0.0, 1.0) * 255).astype(np.uint8)
retex_output_frames = [frame for frame in retex_frames_uint8]
mesh_output_frames = [frame for frame in mesh_frames_uint8]
if ref_img_out.dtype != np.uint8:
ref_img_out = (np.clip(ref_img_out, 0.0, 1.0) * 255).astype(np.uint8)
retex_video_file = f"/tmp/{time.time()}-{random.random()}-refacade_output.mp4"
retex_clip = ImageSequenceClip(retex_output_frames, fps=16)
retex_clip.write_videofile(
retex_video_file, codec="libx264", audio=False, verbose=False, logger=None
)
mesh_video_file = f"/tmp/{time.time()}-{random.random()}-mesh_output.mp4"
mesh_clip = ImageSequenceClip(mesh_output_frames, fps=16)
mesh_clip.write_videofile(
mesh_video_file, codec="libx264", audio=False, verbose=False, logger=None
)
ref_image_to_show = ref_img_out
return retex_video_file, mesh_video_file, ref_image_to_show
text = """
<div style='text-align:center; font-size:32px; font-family: Arial, Helvetica, sans-serif;'>
Refaçade Video Retexture Demo
</div>
<div style="display: flex; justify-content: center; align-items: center; gap: 10px; flex-wrap: nowrap;">
<a href="https://huggingface.co/fishze/Refacade"><img alt="Huggingface Model" src="https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-Model-brightgreen"></a>
<a href="https://github.com/fishZe233/Refacade"><img alt="Github" src="https://img.shields.io/badge/Refaçade-github-black"></a>
<a href="https://arxiv.org/abs/2512.04534"><img alt="arXiv" src="https://img.shields.io/badge/Refaçade-arXiv-b31b1b"></a>
<a href="https://refacade.github.io/"><img alt="Demo Page" src="https://img.shields.io/badge/Website-Demo%20Page-yellow"></a>
</div>
<div style='text-align:center; font-size:20px; margin-top: 10px; font-family: Arial, Helvetica, sans-serif;'>
Youze Huang<sup>*</sup>, Penghui Ruan<sup>*</sup>, Bojia Zi<sup>*</sup>, Xianbiao Qi<sup>†</sup>, Jianan Wang, Rong Xiao
</div>
<div style='text-align:center; font-size:14px; color: #888; margin-top: 5px; font-family: Arial, Helvetica, sans-serif;'>
<sup>*</sup> Equal contribution <sup>†</sup> Corresponding author
</div>
"""
pipe, image_predictor, video_predictor = get_pipe_image_and_video_predictor()
css = """
#my-btn {
width: 60% !important;
margin: 0 auto;
}
#my-video1 {
width: 60% !important;
height: 35% !important;
margin: 0 auto;
}
#my-video {
width: 60% !important;
height: 35% !important;
margin: 0 auto;
}
#my-md {
margin: 0 auto;
}
#my-btn2 {
width: 60% !important;
margin: 0 auto;
}
#my-btn2 button {
width: 120px !important;
max-width: 120px !important;
min-width: 120px !important;
height: 70px !important;
max-height: 70px !important;
min-height: 70px !important;
margin: 8px !important;
border-radius: 8px !important;
overflow: hidden !important;
white-space: normal !important;
}
#my-btn3 {
width: 60% !important;
margin: 0 auto;
}
#ref_title {
text-align: center;
}
#ref-image {
width: 60% !important;
height: 35% !important;
margin: 0 auto;
}
#ref-mask {
width: 60% !important;
height: 35% !important;
margin: 0 auto;
}
#mesh-row {
width: 60% !important;
margin: 0 auto;
}
"""
with gr.Blocks() as demo:
gr.HTML(f"<style>{css}</style>")
video_state = gr.State(
{
"origin_images": None,
"inference_state": None,
"masks": None,
"painted_images": None,
"video_path": None,
"input_points": [],
"scaled_points": [],
"input_labels": [],
"frame_idx": 0,
"obj_id": 1,
}
)
ref_state = gr.State(
{
"origin_image": None,
"input_points": [],
"input_labels": [],
"scaled_points": [],
"mask": None,
}
)
video_frames_state = gr.State(None)
mask_frames_state = gr.State(None)
gr.Markdown(f"<div style='text-align:center;'>{text}</div>")
with gr.Column():
gr.Markdown("Step1: Upload a Source Video", elem_id="ref_title")
video_input = gr.Video(label="Upload Video", elem_id="my-video1")
gr.Examples(
examples=[
["./examples/1.mp4"],
["./examples/2.mp4"],
["./examples/3.mp4"],
["./examples/4.mp4"],
["./examples/5.mp4"],
["./examples/6.mp4"],
],
inputs=[video_input],
label="You can upload or choose a source video below to retexture.",
elem_id="my-btn2"
)
gr.Markdown("Step2: Extract the First Frame & Click for Segmentation", elem_id="ref_title")
get_info_btn = gr.Button("Extract First Frame", elem_id="my-btn")
image_output = gr.Image(
label="First Frame Segmentation",
interactive=True,
elem_id="my-video",
)
with gr.Row(elem_id="my-btn"):
point_prompt = gr.Radio(
["Positive", "Negative"], label="Click Type", value="Positive"
)
clear_btn = gr.Button("Clear All Clicks")
gr.Markdown("Step3: Track to Get Video Mask", elem_id="ref_title")
with gr.Row(elem_id="my-btn"):
n_frames_slider = gr.Slider(
minimum=1, maximum=81, value=33, step=1, label="Tracking Frames (4N+1)"
)
track_btn = gr.Button("Tracking")
video_output = gr.Video(label="Tracking Result", elem_id="my-video")
gr.Markdown("Step4: Upload a Reference Image & Click for Reference Segmentation", elem_id="ref_title")
ref_image_input = gr.Image(
label="Upload Reference Image", elem_id="ref-image", interactive=True
)
gr.Examples(
examples=[
["./examples/reference_image/1.png"],
["./examples/reference_image/2.png"],
["./examples/reference_image/3.png"],
["./examples/reference_image/4.png"],
["./examples/reference_image/5.png"],
["./examples/reference_image/6.png"],
["./examples/reference_image/7.png"],
["./examples/reference_image/8.png"],
["./examples/reference_image/9.png"],
],
inputs=[ref_image_input],
label="You can upload or choose a reference image below to retexture.",
elem_id="my-btn3"
)
ref_image_display = gr.Image(
label="Reference Mask Segmentation",
elem_id="ref-mask",
interactive=True,
)
with gr.Row(elem_id="my-btn"):
ref_point_prompt = gr.Radio(
["Positive", "Negative"], label="Ref Click Type", value="Positive"
)
ref_clear_btn = gr.Button("Clear Ref Clicks")
gr.Markdown("Step5: Retexture", elem_id="ref_title")
with gr.Column(elem_id="my-btn"):
dilate_radius_slider = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Mask Dilation Radius",
)
inference_steps_slider = gr.Slider(
minimum=10,
maximum=30,
value=20,
step=1,
label="Num Inference Steps",
)
guidance_slider = gr.Slider(
minimum=1.0,
maximum=3.0,
value=1.5,
step=0.1,
label="Guidance Scale",
)
ref_patch_slider = gr.Slider(
minimum=0.05,
maximum=1.0,
value=0.1,
step=0.05,
label="Reference Patch Ratio",
)
fg_threshold_slider = gr.Slider(
minimum=0.7,
maximum=1.0,
value=1.0,
step=0.01,
label="Jigsaw Patches' Foreground Coverage Threshold",
)
seed_slider = gr.Slider(
minimum=0,
maximum=2147483647,
value=42,
step=1,
label="Seed",
)
remove_btn = gr.Button("Retexture", elem_id="my-btn")
with gr.Row(elem_id="mesh-row"):
mesh_video = gr.Video(label="Untextured Object")
ref_image_final = gr.Image(
label="Jigsawed Reference Image",
interactive=False,
)
remove_video = gr.Video(label="Retexture Results", elem_id="my-video")
remove_btn.click(
inference_and_return_video,
inputs=[
dilate_radius_slider,
inference_steps_slider,
guidance_slider,
ref_patch_slider,
fg_threshold_slider,
seed_slider,
video_frames_state,
mask_frames_state,
ref_state,
],
outputs=[remove_video, mesh_video, ref_image_final],
)
get_info_btn.click(
get_video_info,
inputs=[video_input, video_state],
outputs=image_output,
)
image_output.select(
fn=segment_frame,
inputs=[point_prompt, video_state],
outputs=image_output,
)
clear_btn.click(clear_clicks, inputs=video_state, outputs=image_output)
track_btn.click(
track_video,
inputs=[n_frames_slider, video_state],
outputs=[video_output, video_frames_state, mask_frames_state],
)
ref_image_input.change(
set_ref_image,
inputs=[ref_image_input, ref_state],
outputs=ref_image_display,
)
ref_image_display.select(
fn=segment_ref_frame,
inputs=[ref_point_prompt, ref_state],
outputs=ref_image_display,
)
ref_clear_btn.click(
clear_ref_clicks, inputs=ref_state, outputs=ref_image_display
)
demo.launch()
|