Spaces:
Sleeping
Sleeping
Add Gradio app and update dependencies
Browse files- .gitignore +4 -1
- app.py +260 -0
- notebooks/financial_sentiment_analysis.ipynb +0 -0
- requirements.txt +2 -1
.gitignore
CHANGED
|
@@ -18,4 +18,7 @@ data/processed/*
|
|
| 18 |
# Virtual environment
|
| 19 |
venv/
|
| 20 |
env/
|
| 21 |
-
.venv/
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
# Virtual environment
|
| 19 |
venv/
|
| 20 |
env/
|
| 21 |
+
.venv/
|
| 22 |
+
|
| 23 |
+
# Temporary files
|
| 24 |
+
temp_merged_data.csv
|
app.py
ADDED
|
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from datetime import datetime, timedelta
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import matplotlib.dates as mdates
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
import io
|
| 9 |
+
import base64
|
| 10 |
+
|
| 11 |
+
# Add src directory to path to import modules
|
| 12 |
+
module_path = os.path.abspath(os.path.join('.'))
|
| 13 |
+
if module_path not in sys.path:
|
| 14 |
+
sys.path.append(module_path)
|
| 15 |
+
|
| 16 |
+
# Import functions from your src directory
|
| 17 |
+
try:
|
| 18 |
+
from src.data_fetcher import get_stock_data, get_news_articles, load_api_keys
|
| 19 |
+
from src.sentiment_analyzer import analyze_sentiment
|
| 20 |
+
except ImportError as e:
|
| 21 |
+
# Handle error gracefully if run from a different directory or modules missing
|
| 22 |
+
print(f"Error importing modules from src: {e}. Ensure app.py is in the project root and src/* exists.")
|
| 23 |
+
# Define dummy functions if imports fail, so Gradio interface can still load
|
| 24 |
+
def get_stock_data(*args, **kwargs): return None
|
| 25 |
+
def get_news_articles(*args, **kwargs): return None
|
| 26 |
+
def analyze_sentiment(*args, **kwargs): return None, None, None
|
| 27 |
+
def load_api_keys(): return None, None
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# --- Data Fetching and Processing Logic ---
|
| 31 |
+
# (Similar to the Streamlit version, but adapted for Gradio outputs)
|
| 32 |
+
def perform_analysis(ticker_symbol, start_date_str, end_date_str): # Renamed date inputs
|
| 33 |
+
"""Fetches data, analyzes sentiment, merges, and prepares outputs for Gradio."""
|
| 34 |
+
if not ticker_symbol:
|
| 35 |
+
return None, "Please enter a stock ticker.", None, None, None
|
| 36 |
+
|
| 37 |
+
# Ensure API keys are loaded (needed for news)
|
| 38 |
+
news_key, _ = load_api_keys()
|
| 39 |
+
if not news_key:
|
| 40 |
+
return None, "Error: NEWS_API_KEY not found in .env file. Cannot fetch news.", None, None, None
|
| 41 |
+
|
| 42 |
+
# Validate and parse date strings
|
| 43 |
+
try:
|
| 44 |
+
start_date_obj = datetime.strptime(start_date_str, '%Y-%m-%d').date()
|
| 45 |
+
end_date_obj = datetime.strptime(end_date_str, '%Y-%m-%d').date()
|
| 46 |
+
except ValueError:
|
| 47 |
+
return None, "Error: Invalid date format. Please use YYYY-MM-DD.", None, None, None
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
if start_date_obj >= end_date_obj:
|
| 51 |
+
return None, "Error: Start date must be before end date.", None, None, None
|
| 52 |
+
|
| 53 |
+
status_updates = f"Fetching data for {ticker_symbol} from {start_date_str} to {end_date_str}...\n"
|
| 54 |
+
|
| 55 |
+
# 1. Fetch Stock Data
|
| 56 |
+
stock_df = get_stock_data(ticker_symbol, start_date_str, end_date_str)
|
| 57 |
+
if stock_df is None or stock_df.empty:
|
| 58 |
+
status_updates += "Could not fetch stock data.\n"
|
| 59 |
+
# Return early if essential data is missing
|
| 60 |
+
return None, status_updates, None, None, None
|
| 61 |
+
else:
|
| 62 |
+
status_updates += f"Successfully fetched {len(stock_df)} days of stock data.\n"
|
| 63 |
+
stock_df['Date'] = pd.to_datetime(stock_df['Date'])
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# 2. Fetch News Articles
|
| 67 |
+
articles_list = get_news_articles(ticker_symbol, start_date_str, end_date_str)
|
| 68 |
+
if articles_list is None or not articles_list:
|
| 69 |
+
status_updates += "Could not fetch news articles or none found.\n"
|
| 70 |
+
news_df = pd.DataFrame()
|
| 71 |
+
else:
|
| 72 |
+
status_updates += f"Found {len(articles_list)} potential news articles.\n"
|
| 73 |
+
news_df = pd.DataFrame(articles_list)
|
| 74 |
+
if 'publishedAt' in news_df.columns:
|
| 75 |
+
news_df['publishedAt'] = pd.to_datetime(news_df['publishedAt'])
|
| 76 |
+
news_df['date'] = news_df['publishedAt'].dt.date
|
| 77 |
+
news_df['date'] = pd.to_datetime(news_df['date']) # Convert date to datetime for merging
|
| 78 |
+
else:
|
| 79 |
+
status_updates += "Warning: News articles missing 'publishedAt' field.\n"
|
| 80 |
+
news_df['date'] = None
|
| 81 |
+
|
| 82 |
+
# 3. Sentiment Analysis (if news available)
|
| 83 |
+
daily_sentiment = pd.DataFrame(columns=['date', 'avg_sentiment_score']) # Default empty
|
| 84 |
+
if not news_df.empty and 'date' in news_df.columns and news_df['date'].notna().any():
|
| 85 |
+
status_updates += f"Performing sentiment analysis on {len(news_df)} articles...\n"
|
| 86 |
+
news_df['text_to_analyze'] = news_df['title'].fillna('') + ". " + news_df['description'].fillna('')
|
| 87 |
+
# --- Apply sentiment analysis ---
|
| 88 |
+
# This can be slow, consider progress updates if possible or running async
|
| 89 |
+
sentiment_results = news_df['text_to_analyze'].apply(lambda x: analyze_sentiment(x) if pd.notna(x) else (None, None, None))
|
| 90 |
+
news_df['sentiment_label'] = sentiment_results.apply(lambda x: x[0])
|
| 91 |
+
news_df['sentiment_score'] = sentiment_results.apply(lambda x: x[1])
|
| 92 |
+
status_updates += "Sentiment analysis complete.\n"
|
| 93 |
+
|
| 94 |
+
# 4. Aggregate Sentiment
|
| 95 |
+
valid_sentiment_df = news_df.dropna(subset=['sentiment_score', 'date'])
|
| 96 |
+
if not valid_sentiment_df.empty:
|
| 97 |
+
daily_sentiment = valid_sentiment_df.groupby('date')['sentiment_score'].mean().reset_index()
|
| 98 |
+
daily_sentiment.rename(columns={'sentiment_score': 'avg_sentiment_score'}, inplace=True)
|
| 99 |
+
status_updates += "Aggregated daily sentiment scores.\n"
|
| 100 |
+
else:
|
| 101 |
+
status_updates += "No valid sentiment scores found to aggregate.\n"
|
| 102 |
+
|
| 103 |
+
# 5. Merge Data
|
| 104 |
+
if not daily_sentiment.empty:
|
| 105 |
+
merged_df = pd.merge(stock_df, daily_sentiment, left_on='Date', right_on='date', how='left')
|
| 106 |
+
if 'date' in merged_df.columns:
|
| 107 |
+
merged_df.drop(columns=['date'], inplace=True)
|
| 108 |
+
status_updates += "Merged stock data with sentiment scores.\n"
|
| 109 |
+
else:
|
| 110 |
+
merged_df = stock_df.copy() # Keep stock data even if no sentiment
|
| 111 |
+
merged_df['avg_sentiment_score'] = None # Add column with None
|
| 112 |
+
status_updates += "No sentiment data to merge.\n"
|
| 113 |
+
|
| 114 |
+
# 6. Calculate Price Change and Lagged Sentiment for Correlation
|
| 115 |
+
merged_df['price_pct_change'] = merged_df['Close'].pct_change()
|
| 116 |
+
merged_df['sentiment_lagged'] = merged_df['avg_sentiment_score'].shift(1)
|
| 117 |
+
|
| 118 |
+
# --- Generate Outputs ---
|
| 119 |
+
|
| 120 |
+
# Plot
|
| 121 |
+
plot_object = None
|
| 122 |
+
if not merged_df.empty:
|
| 123 |
+
fig, ax1 = plt.subplots(figsize=(12, 6)) # Adjusted size for Gradio
|
| 124 |
+
|
| 125 |
+
color = 'tab:blue'
|
| 126 |
+
ax1.set_xlabel('Date')
|
| 127 |
+
ax1.set_ylabel('Stock Close Price', color=color)
|
| 128 |
+
ax1.plot(merged_df['Date'], merged_df['Close'], color=color, label='Stock Price')
|
| 129 |
+
ax1.tick_params(axis='y', labelcolor=color)
|
| 130 |
+
ax1.tick_params(axis='x', rotation=45)
|
| 131 |
+
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
|
| 132 |
+
ax1.xaxis.set_major_locator(mdates.AutoDateLocator(maxticks=10)) # Auto ticks
|
| 133 |
+
|
| 134 |
+
if 'avg_sentiment_score' in merged_df.columns and merged_df['avg_sentiment_score'].notna().any():
|
| 135 |
+
ax2 = ax1.twinx()
|
| 136 |
+
color = 'tab:red'
|
| 137 |
+
ax2.set_ylabel('Average Sentiment Score', color=color)
|
| 138 |
+
ax2.plot(merged_df['Date'], merged_df['avg_sentiment_score'], color=color, linestyle='--', marker='o', markersize=4, label='Avg Sentiment')
|
| 139 |
+
ax2.tick_params(axis='y', labelcolor=color)
|
| 140 |
+
ax2.axhline(0, color='grey', linestyle='--', linewidth=0.8)
|
| 141 |
+
ax2.set_ylim(-1.1, 1.1) # Fix sentiment axis range
|
| 142 |
+
|
| 143 |
+
# Combine legends
|
| 144 |
+
lines, labels = ax1.get_legend_handles_labels()
|
| 145 |
+
lines2, labels2 = ax2.get_legend_handles_labels()
|
| 146 |
+
ax2.legend(lines + lines2, labels + labels2, loc='upper left')
|
| 147 |
+
else:
|
| 148 |
+
ax1.legend(loc='upper left') # Only stock legend
|
| 149 |
+
|
| 150 |
+
plt.title(f"{ticker_symbol} Stock Price vs. Average Daily News Sentiment")
|
| 151 |
+
plt.grid(True, which='major', linestyle='--', linewidth='0.5', color='grey')
|
| 152 |
+
fig.tight_layout()
|
| 153 |
+
plot_object = fig # Return the figure object for Gradio plot component
|
| 154 |
+
status_updates += "Generated plot.\n"
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
# Correlation & Insights Text
|
| 158 |
+
insights_text = "## Analysis Results\n\n"
|
| 159 |
+
correlation = None
|
| 160 |
+
if 'sentiment_lagged' in merged_df.columns and merged_df['sentiment_lagged'].notna().any() and merged_df['price_pct_change'].notna().any():
|
| 161 |
+
correlation_df = merged_df[['sentiment_lagged', 'price_pct_change']].dropna()
|
| 162 |
+
if not correlation_df.empty and len(correlation_df) > 1:
|
| 163 |
+
correlation = correlation_df['sentiment_lagged'].corr(correlation_df['price_pct_change'])
|
| 164 |
+
insights_text += f"**Correlation (Lagged Sentiment vs Price Change):** {correlation:.4f}\n"
|
| 165 |
+
insights_text += "_Measures correlation between the previous day's average sentiment and the current day's price percentage change._\n\n"
|
| 166 |
+
else:
|
| 167 |
+
insights_text += "Correlation: Not enough overlapping data points to calculate.\n\n"
|
| 168 |
+
else:
|
| 169 |
+
insights_text += "Correlation: Sentiment or price change data missing.\n\n"
|
| 170 |
+
|
| 171 |
+
# Simple Insights
|
| 172 |
+
insights_text += "**Potential Insights (Not Financial Advice):**\n"
|
| 173 |
+
if 'avg_sentiment_score' in merged_df.columns and merged_df['avg_sentiment_score'].notna().any():
|
| 174 |
+
avg_sentiment_overall = merged_df['avg_sentiment_score'].mean()
|
| 175 |
+
insights_text += f"- Average Sentiment (Overall Period): {avg_sentiment_overall:.3f}\n"
|
| 176 |
+
|
| 177 |
+
if correlation is not None and pd.notna(correlation):
|
| 178 |
+
if correlation > 0.15:
|
| 179 |
+
insights_text += "- Positive correlation detected. Higher sentiment yesterday tended to correlate with price increases today.\n"
|
| 180 |
+
elif correlation < -0.15:
|
| 181 |
+
insights_text += "- Negative correlation detected. Higher sentiment yesterday tended to correlate with price decreases today (or vice-versa).\n"
|
| 182 |
+
else:
|
| 183 |
+
insights_text += "- Weak correlation detected. Sentiment may not be a strong short-term driver for this period.\n"
|
| 184 |
+
else:
|
| 185 |
+
insights_text += "- No sentiment data available to generate insights.\n"
|
| 186 |
+
|
| 187 |
+
insights_text += "\n**Disclaimer:** This analysis is automated and NOT financial advice. Many factors influence stock prices."
|
| 188 |
+
status_updates += "Generated insights.\n"
|
| 189 |
+
|
| 190 |
+
# Recent News DataFrame
|
| 191 |
+
recent_news_df = pd.DataFrame()
|
| 192 |
+
if not news_df.empty and 'publishedAt' in news_df.columns:
|
| 193 |
+
# Select and format columns for display
|
| 194 |
+
cols_to_show = ['publishedAt', 'title', 'sentiment_label', 'sentiment_score']
|
| 195 |
+
# Ensure all columns exist before selecting
|
| 196 |
+
cols_exist = [col for col in cols_to_show if col in news_df.columns]
|
| 197 |
+
if cols_exist:
|
| 198 |
+
recent_news_df = news_df.sort_values(by='publishedAt', ascending=False)[cols_exist].head(10)
|
| 199 |
+
# Format date for display
|
| 200 |
+
recent_news_df['publishedAt'] = recent_news_df['publishedAt'].dt.strftime('%Y-%m-%d %H:%M')
|
| 201 |
+
status_updates += "Prepared recent news table.\n"
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
return plot_object, insights_text, recent_news_df, status_updates, merged_df # Return merged_df for potential download
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
# --- Gradio Interface Definition ---
|
| 208 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 209 |
+
gr.Markdown("# Stock Sentiment Analysis Dashboard")
|
| 210 |
+
|
| 211 |
+
with gr.Row():
|
| 212 |
+
with gr.Column(scale=1):
|
| 213 |
+
ticker_input = gr.Textbox(label="Stock Ticker", value="AAPL", placeholder="e.g., AAPL, GOOGL")
|
| 214 |
+
# Use Textbox for dates, value should be string
|
| 215 |
+
start_date_input = gr.Textbox(label="Start Date (YYYY-MM-DD)", value=(datetime.now() - timedelta(days=30)).strftime('%Y-%m-%d'))
|
| 216 |
+
end_date_input = gr.Textbox(label="End Date (YYYY-MM-DD)", value=datetime.now().strftime('%Y-%m-%d'))
|
| 217 |
+
analyze_button = gr.Button("Analyze", variant="primary")
|
| 218 |
+
status_output = gr.Textbox(label="Analysis Status", lines=5, interactive=False)
|
| 219 |
+
# Optional: Add download button for the merged data
|
| 220 |
+
download_data = gr.File(label="Download Merged Data (CSV)")
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
with gr.Column(scale=3):
|
| 224 |
+
plot_output = gr.Plot(label="Stock Price vs. Sentiment")
|
| 225 |
+
insights_output = gr.Markdown(label="Analysis & Insights")
|
| 226 |
+
news_output = gr.DataFrame(label="Recent News Headlines", headers=['Date', 'Title', 'Sentiment', 'Score'], wrap=True)
|
| 227 |
+
|
| 228 |
+
# Hidden state to store the merged dataframe for download
|
| 229 |
+
merged_df_state = gr.State(None)
|
| 230 |
+
|
| 231 |
+
def run_analysis_and_prepare_download(ticker, start_date_str, end_date_str): # Use string names
|
| 232 |
+
"""Wrapper function to run analysis and prepare CSV for download."""
|
| 233 |
+
# Parse dates inside the wrapper or ensure perform_analysis handles strings robustly
|
| 234 |
+
try:
|
| 235 |
+
start_date_obj = datetime.strptime(start_date_str, '%Y-%m-%d').date()
|
| 236 |
+
end_date_obj = datetime.strptime(end_date_str, '%Y-%m-%d').date()
|
| 237 |
+
except ValueError:
|
| 238 |
+
# Handle invalid date format input from textbox
|
| 239 |
+
return None, "Error: Invalid date format. Please use YYYY-MM-DD.", None, "Error processing dates.", None, None
|
| 240 |
+
|
| 241 |
+
plot, insights, news, status, merged_df = perform_analysis(ticker, start_date_str, end_date_str) # Pass strings
|
| 242 |
+
|
| 243 |
+
csv_path = None
|
| 244 |
+
if merged_df is not None and not merged_df.empty:
|
| 245 |
+
# Save to a temporary CSV file for Gradio download
|
| 246 |
+
csv_path = "temp_merged_data.csv"
|
| 247 |
+
merged_df.to_csv(csv_path, index=False)
|
| 248 |
+
|
| 249 |
+
return plot, insights, news, status, merged_df, csv_path # Return path for download
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
analyze_button.click(
|
| 253 |
+
fn=run_analysis_and_prepare_download,
|
| 254 |
+
inputs=[ticker_input, start_date_input, end_date_input], # Inputs are now textboxes
|
| 255 |
+
outputs=[plot_output, insights_output, news_output, status_output, merged_df_state, download_data] # Update state and file output
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
# --- Launch the App ---
|
| 259 |
+
if __name__ == "__main__":
|
| 260 |
+
demo.launch()
|
notebooks/financial_sentiment_analysis.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
CHANGED
|
@@ -7,4 +7,5 @@ transformers
|
|
| 7 |
scikit-learn
|
| 8 |
matplotlib
|
| 9 |
nltk
|
| 10 |
-
python-dotenv
|
|
|
|
|
|
| 7 |
scikit-learn
|
| 8 |
matplotlib
|
| 9 |
nltk
|
| 10 |
+
python-dotenv
|
| 11 |
+
gradio
|