Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +101 -34
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,107 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
y = radius * np.sin(theta)
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({
|
| 27 |
-
"x": x,
|
| 28 |
-
"y": y,
|
| 29 |
-
"idx": indices,
|
| 30 |
-
"rand": np.random.randn(num_points),
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
| 34 |
-
.mark_point(filled=True)
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
# Force Streamlit to use /tmp for config, cache, metrics
|
| 4 |
+
os.environ["HOME"] = "/tmp"
|
| 5 |
+
os.environ["XDG_CONFIG_HOME"] = "/tmp"
|
| 6 |
+
os.environ["XDG_CACHE_HOME"] = "/tmp"
|
| 7 |
+
os.environ["STREAMLIT_BROWSER_GATHERUSAGESTATS"] = "false"
|
| 8 |
+
|
| 9 |
+
# Create /tmp/.streamlit manually so Streamlit doesn't try to write to /
|
| 10 |
+
os.makedirs("/tmp/.streamlit", exist_ok=True)
|
| 11 |
+
|
| 12 |
+
# --- now import the rest ---
|
| 13 |
+
import json
|
| 14 |
+
from datetime import datetime
|
| 15 |
import streamlit as st
|
| 16 |
+
from supabase import create_client
|
| 17 |
+
from openai import OpenAI
|
| 18 |
|
| 19 |
+
# --- env vars ---
|
| 20 |
+
SUPABASE_URL = os.environ["SUPABASE_URL"]
|
| 21 |
+
SUPABASE_SERVICE_ROLE_KEY = os.environ["SUPABASE_SERVICE_ROLE_KEY"]
|
| 22 |
+
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
|
| 23 |
+
|
| 24 |
+
sb = create_client(SUPABASE_URL, SUPABASE_SERVICE_ROLE_KEY)
|
| 25 |
+
client = OpenAI(api_key=OPENAI_API_KEY)
|
| 26 |
+
|
| 27 |
+
# --- UI ---
|
| 28 |
+
st.set_page_config(page_title="Email β LLM β Supabase Demo", layout="centered")
|
| 29 |
+
st.title("π§ Email β π€ LLM β π¦ Supabase")
|
| 30 |
+
st.caption("Paste an email, classify with LLM, store in Supabase, approve or decline the action.")
|
| 31 |
|
| 32 |
+
raw = st.text_area("Email body", height=200, placeholder="Paste email text hereβ¦")
|
| 33 |
+
col1, col2 = st.columns(2)
|
| 34 |
+
with col1:
|
| 35 |
+
subject = st.text_input("Subject (optional)")
|
| 36 |
+
with col2:
|
| 37 |
+
sender = st.text_input("From (optional)")
|
| 38 |
|
| 39 |
+
# --- helpers ---
|
| 40 |
+
def classify_email(email_text: str) -> dict:
|
| 41 |
+
prompt = f"""
|
| 42 |
+
Classify the email as one of: offer_update, rental_request, general.
|
| 43 |
+
Return STRICT JSON: {{"label":"...","confidence":0.0,"suggestion":"..."}}
|
| 44 |
+
Email:
|
| 45 |
+
{email_text}
|
| 46 |
"""
|
| 47 |
+
resp = client.chat.completions.create(
|
| 48 |
+
model="gpt-4o-mini",
|
| 49 |
+
temperature=0.2,
|
| 50 |
+
messages=[{"role": "user", "content": prompt}],
|
| 51 |
+
)
|
| 52 |
+
text = resp.choices[0].message.content or "{}"
|
| 53 |
+
try:
|
| 54 |
+
start, end = text.find("{"), text.rfind("}") + 1
|
| 55 |
+
return json.loads(text[start:end])
|
| 56 |
+
except Exception:
|
| 57 |
+
return {"label": "general", "confidence": 0.6, "suggestion": "Acknowledge receipt."}
|
| 58 |
+
|
| 59 |
+
def insert_email(raw_text, subject, from_addr):
|
| 60 |
+
res = sb.table("emails").insert(
|
| 61 |
+
{"raw_text": raw_text, "subject": subject, "from_addr": from_addr}
|
| 62 |
+
).execute()
|
| 63 |
+
return res.data[0]
|
| 64 |
+
|
| 65 |
+
def insert_classification(email_id, cls):
|
| 66 |
+
sb.table("classifications").insert({
|
| 67 |
+
"email_id": email_id,
|
| 68 |
+
"label": cls["label"],
|
| 69 |
+
"confidence": cls["confidence"],
|
| 70 |
+
"suggestion": cls["suggestion"],
|
| 71 |
+
}).execute()
|
| 72 |
+
|
| 73 |
+
def approve_action(email_id, suggestion):
|
| 74 |
+
sb.table("action_log").insert({
|
| 75 |
+
"email_id": email_id,
|
| 76 |
+
"action": suggestion,
|
| 77 |
+
"approved": True,
|
| 78 |
+
"approved_at": datetime.utcnow().isoformat(),
|
| 79 |
+
}).execute()
|
| 80 |
+
|
| 81 |
+
# --- flow ---
|
| 82 |
+
if st.button("π Classify and Save", type="primary", disabled=not raw.strip()):
|
| 83 |
+
try:
|
| 84 |
+
email_row = insert_email(raw, subject, sender)
|
| 85 |
+
cls = classify_email(raw)
|
| 86 |
+
insert_classification(email_row["id"], cls)
|
| 87 |
+
st.session_state["current"] = {"email": email_row, "cls": cls}
|
| 88 |
+
st.success("β
Email classified and saved.")
|
| 89 |
+
except Exception as e:
|
| 90 |
+
st.error(f"Error: {e}")
|
| 91 |
+
|
| 92 |
+
current = st.session_state.get("current")
|
| 93 |
+
if current:
|
| 94 |
+
st.subheader("Result")
|
| 95 |
+
st.write(f"**Label:** {current['cls']['label']}")
|
| 96 |
+
st.write(f"**Confidence:** {current['cls']['confidence']:.2f}")
|
| 97 |
+
st.write("**Suggested action:**")
|
| 98 |
+
st.code(current["cls"]["suggestion"])
|
| 99 |
|
| 100 |
+
if st.button("π Approve"):
|
| 101 |
+
try:
|
| 102 |
+
approve_action(current["email"]["id"], current["cls"]["suggestion"])
|
| 103 |
+
st.success("Approved and logged.")
|
| 104 |
+
except Exception as e:
|
| 105 |
+
st.error(f"Error approving: {e}")
|
| 106 |
+
if st.button("π Decline"):
|
| 107 |
+
st.info("Declined. No action logged.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|