Spaces:
Sleeping
Sleeping
Update Ingest.py
Browse files
Ingest.py
CHANGED
|
@@ -17,9 +17,21 @@ logging.info("Loading documents...")
|
|
| 17 |
loader = DirectoryLoader('data', glob="./*.txt")
|
| 18 |
documents = loader.load()
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
# Extract text from documents and split into manageable texts with logging
|
| 21 |
logging.info("Extracting and splitting texts from documents...")
|
| 22 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
|
| 23 |
texts = []
|
| 24 |
for document in documents:
|
| 25 |
if hasattr(document, 'get_text'):
|
|
@@ -27,13 +39,33 @@ for document in documents:
|
|
| 27 |
else:
|
| 28 |
text_content = "" # Default to empty string if no text method is available
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
# Define embedding function
|
| 33 |
def embedding_function(text):
|
| 34 |
embeddings_model = HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
return embeddings_model.embed_query(text)
|
| 36 |
|
|
|
|
|
|
|
| 37 |
# Create FAISS index for embeddings
|
| 38 |
index = IndexFlatL2(768) # Dimension of embeddings, adjust as needed
|
| 39 |
|
|
@@ -45,10 +77,25 @@ index_to_docstore_id = {i: i for i in range(len(texts))}
|
|
| 45 |
faiss_db = FAISS(embedding_function, index, docstore, index_to_docstore_id)
|
| 46 |
|
| 47 |
# Process and store embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
logging.info("Storing embeddings in FAISS...")
|
| 49 |
for i, text in enumerate(texts):
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
# Exporting the vector embeddings database with logging
|
| 54 |
logging.info("Exporting the vector embeddings database...")
|
|
@@ -58,4 +105,4 @@ faiss_db.save_local("ipc_embed_db")
|
|
| 58 |
logging.info("Process completed successfully.")
|
| 59 |
|
| 60 |
# Shutdown Ray after the process
|
| 61 |
-
ray.shutdown()
|
|
|
|
| 17 |
loader = DirectoryLoader('data', glob="./*.txt")
|
| 18 |
documents = loader.load()
|
| 19 |
|
| 20 |
+
# Extract text from documents and split into manageable texts with logging
|
| 21 |
+
#logging.info("Extracting and splitting texts from documents...")
|
| 22 |
+
#text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
|
| 23 |
+
#texts = []
|
| 24 |
+
#for document in documents:
|
| 25 |
+
# if hasattr(document, 'get_text'):
|
| 26 |
+
# text_content = document.get_text() # Adjust according to actual method
|
| 27 |
+
# else:
|
| 28 |
+
# text_content = "" # Default to empty string if no text method is available
|
| 29 |
+
#
|
| 30 |
+
# texts.extend(text_splitter.split_text(text_content))
|
| 31 |
+
|
| 32 |
+
|
| 33 |
# Extract text from documents and split into manageable texts with logging
|
| 34 |
logging.info("Extracting and splitting texts from documents...")
|
|
|
|
| 35 |
texts = []
|
| 36 |
for document in documents:
|
| 37 |
if hasattr(document, 'get_text'):
|
|
|
|
| 39 |
else:
|
| 40 |
text_content = "" # Default to empty string if no text method is available
|
| 41 |
|
| 42 |
+
# Check if text_content is valid before splitting
|
| 43 |
+
if text_content and isinstance(text_content, str):
|
| 44 |
+
valid_chunks = text_splitter.split_text(text_content)
|
| 45 |
+
texts.extend(valid_chunks)
|
| 46 |
+
else:
|
| 47 |
+
logging.warning(f"Invalid document or empty content encountered: {document}")
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# Define embedding function
|
| 53 |
+
#def embedding_function(text):
|
| 54 |
+
# embeddings_model = HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT")
|
| 55 |
+
# return embeddings_model.embed_query(text)
|
| 56 |
|
| 57 |
# Define embedding function
|
| 58 |
def embedding_function(text):
|
| 59 |
embeddings_model = HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT")
|
| 60 |
+
|
| 61 |
+
# Ensure input is valid
|
| 62 |
+
if not text or not isinstance(text, str):
|
| 63 |
+
raise ValueError(f"Invalid text for embedding: {text}")
|
| 64 |
+
|
| 65 |
return embeddings_model.embed_query(text)
|
| 66 |
|
| 67 |
+
|
| 68 |
+
|
| 69 |
# Create FAISS index for embeddings
|
| 70 |
index = IndexFlatL2(768) # Dimension of embeddings, adjust as needed
|
| 71 |
|
|
|
|
| 77 |
faiss_db = FAISS(embedding_function, index, docstore, index_to_docstore_id)
|
| 78 |
|
| 79 |
# Process and store embeddings
|
| 80 |
+
#logging.info("Storing embeddings in FAISS...")
|
| 81 |
+
#for i, text in enumerate(texts):
|
| 82 |
+
# embedding = embedding_function(text)
|
| 83 |
+
# faiss_db.add_documents([embedding])
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
# Store embeddings in FAISS
|
| 87 |
logging.info("Storing embeddings in FAISS...")
|
| 88 |
for i, text in enumerate(texts):
|
| 89 |
+
try:
|
| 90 |
+
if text: # Check that the text is not None or empty
|
| 91 |
+
embedding = embedding_function(text)
|
| 92 |
+
faiss_db.add_documents([embedding])
|
| 93 |
+
else:
|
| 94 |
+
logging.warning(f"Skipping invalid or empty text at index {i}.")
|
| 95 |
+
except Exception as e:
|
| 96 |
+
logging.error(f"Error while processing text at index {i}: {text}, Error: {e}")
|
| 97 |
+
|
| 98 |
+
|
| 99 |
|
| 100 |
# Exporting the vector embeddings database with logging
|
| 101 |
logging.info("Exporting the vector embeddings database...")
|
|
|
|
| 105 |
logging.info("Process completed successfully.")
|
| 106 |
|
| 107 |
# Shutdown Ray after the process
|
| 108 |
+
ray.shutdown()
|