Suhani-2407 commited on
Commit
d41eab8
·
verified ·
1 Parent(s): fad83db

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -0
app.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ from PIL import Image
5
+
6
+ # Load the trained model
7
+ model = tf.keras.models.load_model("MobileNet_model.h5") # Ensure the model file is uploaded in the same directory
8
+
9
+ # Define class names
10
+ class_names = ["Fake", "Low", "Medium", "High"] # Modify if needed
11
+
12
+ # Image Preprocessing Function
13
+ img_size = (128, 128) # Ensure it matches the input size used during training
14
+
15
+ def preprocess_image(image):
16
+ image = image.resize(img_size) # Resize image
17
+ image = np.array(image) / 255.0 # Normalize as done in ImageDataGenerator (rescale=1./255)
18
+ image = np.expand_dims(image, axis=0) # Add batch dimension
19
+ return image
20
+
21
+ # API Endpoint for Prediction
22
+ def predict(image):
23
+ image = preprocess_image(image)
24
+ predictions = model.predict(image)
25
+ predicted_class = np.argmax(predictions, axis=1)[0] # Get predicted class index
26
+ confidence_scores = {class_names[i]: float(predictions[0][i]) for i in range(len(class_names))} # Get probability scores
27
+
28
+ return {"Predicted Class": class_names[predicted_class], "Confidence Scores": confidence_scores}
29
+
30
+ # Gradio API Interface
31
+ interface = gr.Interface(
32
+ fn=predict,
33
+ inputs=gr.Image(type="pil"), # Accept image as input
34
+ outputs=gr.JSON(), # Return JSON response
35
+ title="Fire Detection API",
36
+ description="Send an image to classify it into one of four categories: Fake, Low, Medium, or High."
37
+ )
38
+
39
+ # Launch API
40
+ if __name__ == "__main__":
41
+ interface.launch(share=True)