Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
# Load the trained model
|
| 7 |
+
model = tf.keras.models.load_model("MobileNet_model.h5") # Ensure the model file is uploaded in the same directory
|
| 8 |
+
|
| 9 |
+
# Define class names
|
| 10 |
+
class_names = ["Fake", "Low", "Medium", "High"] # Modify if needed
|
| 11 |
+
|
| 12 |
+
# Image Preprocessing Function
|
| 13 |
+
img_size = (128, 128) # Ensure it matches the input size used during training
|
| 14 |
+
|
| 15 |
+
def preprocess_image(image):
|
| 16 |
+
image = image.resize(img_size) # Resize image
|
| 17 |
+
image = np.array(image) / 255.0 # Normalize as done in ImageDataGenerator (rescale=1./255)
|
| 18 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
| 19 |
+
return image
|
| 20 |
+
|
| 21 |
+
# API Endpoint for Prediction
|
| 22 |
+
def predict(image):
|
| 23 |
+
image = preprocess_image(image)
|
| 24 |
+
predictions = model.predict(image)
|
| 25 |
+
predicted_class = np.argmax(predictions, axis=1)[0] # Get predicted class index
|
| 26 |
+
confidence_scores = {class_names[i]: float(predictions[0][i]) for i in range(len(class_names))} # Get probability scores
|
| 27 |
+
|
| 28 |
+
return {"Predicted Class": class_names[predicted_class], "Confidence Scores": confidence_scores}
|
| 29 |
+
|
| 30 |
+
# Gradio API Interface
|
| 31 |
+
interface = gr.Interface(
|
| 32 |
+
fn=predict,
|
| 33 |
+
inputs=gr.Image(type="pil"), # Accept image as input
|
| 34 |
+
outputs=gr.JSON(), # Return JSON response
|
| 35 |
+
title="Fire Detection API",
|
| 36 |
+
description="Send an image to classify it into one of four categories: Fake, Low, Medium, or High."
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Launch API
|
| 40 |
+
if __name__ == "__main__":
|
| 41 |
+
interface.launch(share=True)
|