Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoModelForQuestionAnswering, AutoTokenizer, LayoutLMv3ImageProcessor | |
| model_name = "TusharGoel/LiLT-Document-QA" | |
| revision = "3a510b84c579386c5edfd3881ba839bba28e6a44" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, apply_ocr = True, revision=revision) | |
| image_processor = LayoutLMv3ImageProcessor() | |
| model = AutoModelForQuestionAnswering.from_pretrained(model_name, revision=revision) | |
| model.eval() | |
| def qna(image, question): | |
| try: | |
| res = image_processor(image, apply_ocr = True) | |
| words = res["words"][0] | |
| boxes = res["boxes"][0] | |
| encoding = tokenizer(question, words, boxes = boxes, return_token_type_ids=True, return_tensors="pt", truncation=True, padding="max_length") | |
| word_ids = encoding.word_ids(0) | |
| outputs = model(**encoding) | |
| start_scores = outputs.start_logits | |
| end_scores = outputs.end_logits | |
| start, end = word_ids[start_scores.argmax(-1).item()], word_ids[end_scores.argmax(-1).item()] | |
| answer = " ".join(words[start : end + 1]) | |
| except: | |
| answer = "No Answer" | |
| return answer | |
| img = gr.Image(label="Image") | |
| question = gr.Text(label="Question") | |
| label = gr.Label(label="label") | |
| iface = gr.Interface(fn=qna, inputs=[img, question], outputs=label, title="LiLT - Document Question Answering", allow_duplication=True) | |
| iface.launch() |