Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -58,7 +58,7 @@ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS,
|
|
| 58 |
|
| 59 |
# --- 📌 Define Column Groups ---
|
| 60 |
|
| 61 |
-
# Tab 1: Generation (
|
| 62 |
COLS_GEN = [
|
| 63 |
"Model",
|
| 64 |
# LongText2Video
|
|
@@ -69,19 +69,18 @@ COLS_GEN = [
|
|
| 69 |
"Video2Video / CLIP", "Video2Video / DINO", "Video2Video / MLLM"
|
| 70 |
]
|
| 71 |
|
| 72 |
-
# Tab 2:
|
| 73 |
COLS_LONG = [
|
| 74 |
"Model",
|
| 75 |
"LongVideo QA / Acc", # Understanding
|
| 76 |
-
"Editing /
|
| 77 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
]
|
| 79 |
|
| 80 |
-
# Filter out columns not present in the dataframe to prevent errors
|
| 81 |
-
# (Note: We don't filter COLS_GEN here strictly because we want to see if they are missing,
|
| 82 |
-
# but standard practice is to filter. Assuming populate.py logic fills missing ones with empty strings/NaN)
|
| 83 |
-
COLS_LONG = [c for c in COLS_LONG if c in LEADERBOARD_DF.columns]
|
| 84 |
-
|
| 85 |
# --- UI Layout ---
|
| 86 |
demo = gr.Blocks(css=custom_css)
|
| 87 |
|
|
@@ -96,44 +95,58 @@ with demo:
|
|
| 96 |
gr.Markdown("### Table 1: Comparison across LongText2Video, Entities2Video and Video2Video")
|
| 97 |
|
| 98 |
# 1. Select Columns
|
| 99 |
-
# We use a list comprehension to ensure we only pick columns that actually exist in DF
|
| 100 |
-
# to avoid KeyErrors, but keep the order defined in COLS_GEN
|
| 101 |
valid_gen_cols = [c for c in COLS_GEN if c in LEADERBOARD_DF.columns]
|
| 102 |
df_gen = LEADERBOARD_DF[valid_gen_cols].copy()
|
| 103 |
|
| 104 |
-
# 2. Filter Rows (Only specific models)
|
| 105 |
-
|
| 106 |
-
|
| 107 |
if "Model" in df_gen.columns:
|
| 108 |
-
df_gen = df_gen[df_gen["Model"].isin(
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
# This sets the order to: UniVA, LTX-Video, Wan, Seedance (or however you arranged target_models)
|
| 112 |
-
df_gen["Model"] = pd.Categorical(df_gen["Model"], categories=target_models, ordered=True)
|
| 113 |
df_gen = df_gen.sort_values("Model")
|
| 114 |
|
| 115 |
gr.Dataframe(
|
| 116 |
value=df_gen,
|
| 117 |
headers=valid_gen_cols,
|
| 118 |
-
datatype="markdown",
|
| 119 |
elem_id="leaderboard-table-gen",
|
| 120 |
interactive=False,
|
| 121 |
visible=True,
|
| 122 |
)
|
| 123 |
|
| 124 |
-
# === Tab 2:
|
| 125 |
-
with gr.TabItem("🧠
|
| 126 |
-
gr.Markdown("###
|
| 127 |
|
| 128 |
-
#
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
gr.Dataframe(
|
| 135 |
value=df_long,
|
| 136 |
-
headers=
|
| 137 |
datatype="markdown",
|
| 138 |
elem_id="leaderboard-table-long",
|
| 139 |
interactive=False,
|
|
|
|
| 58 |
|
| 59 |
# --- 📌 Define Column Groups ---
|
| 60 |
|
| 61 |
+
# Tab 1: Generation (Table 1)
|
| 62 |
COLS_GEN = [
|
| 63 |
"Model",
|
| 64 |
# LongText2Video
|
|
|
|
| 69 |
"Video2Video / CLIP", "Video2Video / DINO", "Video2Video / MLLM"
|
| 70 |
]
|
| 71 |
|
| 72 |
+
# Tab 2: Perception & Editing (Table 2 - 7 Data Columns)
|
| 73 |
COLS_LONG = [
|
| 74 |
"Model",
|
| 75 |
"LongVideo QA / Acc", # Understanding
|
| 76 |
+
"Editing / CLIP", # Editing
|
| 77 |
+
"Editing / DINO",
|
| 78 |
+
"Editing / MLLM",
|
| 79 |
+
"Segmentation / J", # Segmentation
|
| 80 |
+
"Segmentation / F",
|
| 81 |
+
"Segmentation / J&F"
|
| 82 |
]
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
# --- UI Layout ---
|
| 85 |
demo = gr.Blocks(css=custom_css)
|
| 86 |
|
|
|
|
| 95 |
gr.Markdown("### Table 1: Comparison across LongText2Video, Entities2Video and Video2Video")
|
| 96 |
|
| 97 |
# 1. Select Columns
|
|
|
|
|
|
|
| 98 |
valid_gen_cols = [c for c in COLS_GEN if c in LEADERBOARD_DF.columns]
|
| 99 |
df_gen = LEADERBOARD_DF[valid_gen_cols].copy()
|
| 100 |
|
| 101 |
+
# 2. Filter Rows (Only specific models for Table 1)
|
| 102 |
+
target_models_gen = ["UniVA", "LTX-Video", "Wan", "Seedance"]
|
| 103 |
+
|
| 104 |
if "Model" in df_gen.columns:
|
| 105 |
+
df_gen = df_gen[df_gen["Model"].isin(target_models_gen)]
|
| 106 |
+
# Sort by defined order
|
| 107 |
+
df_gen["Model"] = pd.Categorical(df_gen["Model"], categories=target_models_gen, ordered=True)
|
|
|
|
|
|
|
| 108 |
df_gen = df_gen.sort_values("Model")
|
| 109 |
|
| 110 |
gr.Dataframe(
|
| 111 |
value=df_gen,
|
| 112 |
headers=valid_gen_cols,
|
| 113 |
+
datatype="markdown",
|
| 114 |
elem_id="leaderboard-table-gen",
|
| 115 |
interactive=False,
|
| 116 |
visible=True,
|
| 117 |
)
|
| 118 |
|
| 119 |
+
# === Tab 2: Perception & Editing (Table 2) ===
|
| 120 |
+
with gr.TabItem("🧠 Perception & Editing", elem_id="tab-long", id=1):
|
| 121 |
+
gr.Markdown("### Table 2: Understanding, Editing, and Segmentation")
|
| 122 |
|
| 123 |
+
# 1. Select Columns
|
| 124 |
+
valid_long_cols = [c for c in COLS_LONG if c in LEADERBOARD_DF.columns]
|
| 125 |
+
df_long = LEADERBOARD_DF[valid_long_cols].copy()
|
| 126 |
+
|
| 127 |
+
# 2. Filter Rows (Only specific models for Table 2)
|
| 128 |
+
# Removing pure generation models (Wan, LTX, Seedance) as they don't have these scores
|
| 129 |
+
target_models_long = [
|
| 130 |
+
"UniVA",
|
| 131 |
+
"InternVL3-38B",
|
| 132 |
+
"Qwen2.5-VL-72B",
|
| 133 |
+
"Gemini 2.5 Pro",
|
| 134 |
+
"GPT-4o",
|
| 135 |
+
"Vace",
|
| 136 |
+
"SA2VA"
|
| 137 |
+
]
|
| 138 |
+
|
| 139 |
+
if "Model" in df_long.columns:
|
| 140 |
+
df_long = df_long[df_long["Model"].isin(target_models_long)]
|
| 141 |
+
|
| 142 |
+
# 3. Sort: Default by Understanding Acc
|
| 143 |
+
sort_col = "LongVideo QA / Acc"
|
| 144 |
+
if sort_col in df_long.columns:
|
| 145 |
+
df_long = df_long.sort_values(by=sort_col, ascending=False)
|
| 146 |
|
| 147 |
gr.Dataframe(
|
| 148 |
value=df_long,
|
| 149 |
+
headers=valid_long_cols,
|
| 150 |
datatype="markdown",
|
| 151 |
elem_id="leaderboard-table-long",
|
| 152 |
interactive=False,
|