File size: 23,393 Bytes
a597782 1c249d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
import gradio as gr
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import tempfile
import os
import re
import math
import threading
import atexit
import logging
from data_loader import DataLoader
from scoring import ScoringEngine, PRESET_CONFIGS
from dev_tools import DevSuite
from config import *
from about import get_about_markdown
# === SETUP ===
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ΠΠ½ΠΈΡΠΈΠ°Π»ΠΈΠ·Π°ΡΠΈΡ Π·Π°Π³ΡΡΠ·ΡΠΈΠΊΠ° Π΄Π°Π½Π½ΡΡ
loader = DataLoader()
# Thread-safe globals
_cache_lock = threading.Lock()
_CACHED_DF = None
_temp_files = []
# === CLEANUP ===
@atexit.register
def cleanup_temp_files():
"""Removes temporary CSV files on exit."""
for f in _temp_files:
if os.path.exists(f):
try:
os.remove(f)
except OSError:
pass
# === DATA ACCESS ===
def get_dataframe():
"""Thread-safe lazy loader for dataframe."""
global _CACHED_DF
with _cache_lock:
if _CACHED_DF is None:
if FORCE_REFRESH_ON_STARTUP:
logger.info("First load: Clearing cache...")
loader.clear_cache()
df = loader.load_data()
if not df.empty:
_CACHED_DF = ScoringEngine(df).calculate_all()
else:
_CACHED_DF = df
return _CACHED_DF
def invalidate_cache():
"""Unified cache invalidation logic."""
global _CACHED_DF
with _cache_lock:
_CACHED_DF = None
deleted = loader.clear_cache()
return deleted
# === FORMATTING & UI HELPERS ===
def get_header_content(df):
count = len(df) if df is not None else 0
current_time = loader.last_updated
return f"""
# π UGI Leaderboard: Presets Edition v3.7
**Last Updated:** {current_time} | **Models:** {count} | **PID:** {os.getpid()}
"""
def format_params(row):
total = row.get('Total Parameters', np.nan)
active = row.get('Active Parameters', np.nan)
if pd.isna(total) or total <= 0:
return "N/A"
def fmt(x):
try:
val = float(x)
if val <= 0: return "?"
if val < 1: return f"{val*1000:.0f}M"
return f"{val:.1f}B"
except (ValueError, TypeError):
return "?"
formatted_total = fmt(total)
# Show active params if MoE
if pd.notna(active) and active > 0 and active < total:
return f"{formatted_total} (Act: {fmt(active)})"
return formatted_total
def escape_markdown(text):
return re.sub(r'([\[\]()\*_#~`])', r'\\\1', str(text))
def format_model_link(row):
name = str(row.get('author/model_name', 'Unknown'))
link = row.get('Model Link', '')
safe_name = escape_markdown(name)
if pd.notna(link) and isinstance(link, str) and link.startswith('http'):
return f"[{safe_name}]({link})"
return safe_name
def get_architecture_choices(df):
if df is None or df.empty:
return []
valid_archs = [a for a in df['Architecture'].dropna().unique()
if str(a).lower() not in ['unknown', 'nan', 'null', 'none']]
return sorted(valid_archs)
# === FILTERING LOGIC (Refactored) ===
def apply_search_filter(df, query):
if not query:
return df
return df[
df['author/model_name'].astype(str).str.contains(query, case=False, na=False) |
df['Architecture'].astype(str).str.contains(query, case=False, na=False)
]
def apply_param_filter(df, param_min, param_max, proprietary):
has_params = df['Total Parameters'].notna() & (df['Total Parameters'] > 0)
p_min = float(param_min) if param_min is not None else 0.0
p_max = float(param_max) if param_max is not None else 99999.0
in_range = (df['Total Parameters'] >= p_min) & (df['Total Parameters'] <= p_max)
if proprietary:
# Include if in range OR if proprietary (no params known)
return df[(has_params & in_range) | (~has_params)]
else:
# Strict range check
return df[has_params & in_range]
def apply_date_filter(df, date_preset, date_start, date_end):
if date_preset == "All Time" or 'Release Date' not in df.columns:
return df
temp_dates = pd.to_datetime(df['Release Date'], errors='coerce')
now = pd.Timestamp.now()
mask = pd.Series(True, index=df.index)
if date_preset == "Last Week":
mask = temp_dates >= (now - pd.Timedelta(days=7))
elif date_preset == "Last Month":
mask = temp_dates >= (now - pd.Timedelta(days=30))
elif date_preset == "Last Year":
mask = temp_dates >= (now - pd.Timedelta(days=365))
elif date_preset == "Custom Range":
if date_start:
s = pd.to_datetime(date_start, errors='coerce')
if pd.notna(s): mask &= (temp_dates >= s)
if date_end:
e = pd.to_datetime(date_end, errors='coerce')
if pd.notna(e): mask &= (temp_dates <= e)
return df[mask]
def filter_leaderboard_pipeline(df, preset, query, param_min, param_max, proprietary,
moe_only, thinking_mode, model_types, architecture, top_n,
balance_filter, date_preset, date_start, date_end):
if df is None or df.empty:
return pd.DataFrame(), pd.DataFrame()
# 1. Search
df = apply_search_filter(df, query)
# 2. Parameters
df = apply_param_filter(df, param_min, param_max, proprietary)
# 3. MoE
if moe_only:
df = df[df['Active Parameters'] < df['Total Parameters']]
# 4. Thinking
if thinking_mode == "Hide Thinking":
df = df[~df['Is Thinking Model']]
elif thinking_mode == "Only Thinking":
df = df[df['Is Thinking Model']]
# 5. Types
type_mask = pd.Series(False, index=df.index)
for m_type, col in [("Foundation", "Is Foundation"), ("Finetuned", "Is Finetuned"), ("Merged", "Is Merged")]:
if m_type in model_types and col in df.columns:
type_mask |= df[col]
if type_mask.any():
df = df[type_mask]
# 6. Architecture
if architecture and architecture != "All":
df = df[df['Architecture'] == architecture]
# 7. Balance
if balance_filter != "Show All":
threshold = 0.7 if "Perfect" in balance_filter else (0.5 if "Good" in balance_filter else 0.3)
target_col = "Score_π Perfect Balance"
if target_col in df.columns:
df = df[df[target_col] >= threshold]
# 8. Date
df = apply_date_filter(df, date_preset, date_start, date_end)
# 9. Sorting & Top N
score_col = f"Score_{preset}"
if score_col not in df.columns:
return pd.DataFrame(), pd.DataFrame()
df = df.sort_values(score_col, ascending=False).head(top_n).copy()
if df.empty:
return pd.DataFrame(), pd.DataFrame()
# 10. Formatting for Display
display_df = df.copy()
display_df['Rank'] = range(1, len(display_df) + 1)
display_df['Model Name'] = display_df.apply(format_model_link, axis=1)
display_df['Parameters'] = display_df.apply(format_params, axis=1)
display_df['Architecture'] = display_df['Architecture'].astype(str)
display_df['Date'] = pd.to_datetime(display_df['Release Date'], errors='coerce').dt.strftime('%Y-%m-%d').fillna('-')
display_df = display_df.rename(columns={score_col: "β Score"})
display_cols = ['Rank', 'Model Name', "β Score", 'Date', 'Badges', 'Parameters', 'Architecture']
return display_df[display_cols], df
# === COMPARISON & UTILS ===
def search_models(df, query, limit=10):
"""Efficient search for model selection."""
if not query or df is None:
return gr.update(choices=[])
mask = df['author/model_name'].astype(str).str.contains(query, case=False, na=False)
matches = df.loc[mask, 'author/model_name'].head(limit).tolist()
return gr.update(choices=matches)
def compare_models(df, model_names_text):
if df is None or not model_names_text:
return None, pd.DataFrame()
targets = [x.strip() for x in model_names_text.split('\n') if x.strip()]
subset = df[df['author/model_name'].isin(targets)].copy()
if subset.empty:
return None, pd.DataFrame()
# Radar Chart
fig = go.Figure()
# Use metrics from config
labels = list(COMPARE_METRICS.keys())
cols = list(COMPARE_METRICS.values())
for _, row in subset.iterrows():
values = []
for col in cols:
val = float(row.get(col, 0))
if pd.isna(val): val = 0
values.append(val)
# Close the loop
values.append(values[0])
plot_labels = labels + [labels[0]]
fig.add_trace(go.Scatterpolar(
r=values, theta=plot_labels,
fill='toself',
name=row['author/model_name'][:30]
))
fig.update_layout(polar=dict(radialaxis=dict(visible=True, range=[0, 1])), showlegend=True, height=500)
# Comparison Table
compare_cols = ['author/model_name', 'Total Parameters', 'Score_π Divine RP'] + cols
# Rename for display
rename_map = {
'author/model_name': 'Model',
'Total Parameters': 'Params',
'Score_π Divine RP': 'Divine RP'
}
# Add metric renames
for k, v in COMPARE_METRICS.items():
rename_map[v] = k
compare_df = subset[compare_cols].rename(columns=rename_map)
return fig, compare_df
def calculate_custom_score(df, weights_dict):
if df is None or df.empty:
return pd.DataFrame()
# Using lightweight engine to avoid full re-calc
temp_engine = ScoringEngine(df)
# Calculate score on the original dataframe (the engine copies it internally)
scores = temp_engine.calculate_weighted_score(weights_dict).round(3)
# Create result view
result = df.copy()
result['Custom_Score'] = scores
result = result.sort_values('Custom_Score', ascending=False).head(50)
display = result[['author/model_name', 'Custom_Score', 'Total Parameters', 'Badges']].copy()
display = display.rename(columns={'author/model_name': 'Model', 'Custom_Score': 'β Score', 'Total Parameters': 'Params'})
return display
def run_diagnostics(df):
if df is None or df.empty:
return "β No data loaded", pd.DataFrame(), pd.DataFrame()
dev = DevSuite(df)
return dev.run_all_tests(), dev.get_anomalies_df(), dev.get_statistics_df()
def clear_and_reload_ui():
deleted = invalidate_cache()
new_df = get_dataframe()
status = f"β
Cache cleared!\nDeleted: {', '.join(deleted) if deleted else 'None'}\nπ Data reloaded: {len(new_df)} rows"
return new_df, status
def export_handler(df):
if df is None or df.empty:
return gr.update(value=None, visible=False)
try:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv', mode='w', encoding='utf-8')
_temp_files.append(temp_file.name) # Track for cleanup
df.to_csv(temp_file.name, index=False)
return gr.update(value=temp_file.name, visible=True)
except Exception as e:
logger.error(f"Export failed: {e}")
return gr.update(value=None, visible=False)
# === UI BUILDER ===
with gr.Blocks() as demo:
# Initial Load
initial_df = get_dataframe()
df_state = gr.State(initial_df)
filtered_raw_state = gr.State()
# Dynamic Params for Sliders
actual_max_params = 100
if initial_df is not None and not initial_df.empty:
m = initial_df['Total Parameters'].max()
if pd.notna(m):
actual_max_params = math.ceil(m)
max_params_state = gr.State(actual_max_params)
# Header
header_md = gr.Markdown(get_header_content(initial_df))
with gr.Tabs():
with gr.Tab("π
Leaderboard"):
# Controls
with gr.Row(variant="panel", equal_height=True):
with gr.Column(scale=5):
preset_dropdown = gr.Radio(
choices=list(PRESET_CONFIGS.keys()) + ["β‘ Efficiency King"],
value="π Divine RP",
label="π― Preset",
interactive=True
)
with gr.Column(scale=1, min_width=150):
refresh_btn = gr.Button("π Refresh Data", variant="secondary", size="lg")
# Filters
with gr.Accordion("βοΈ Hardware & Filters", open=False):
with gr.Row():
param_min = gr.Slider(0, actual_max_params, 0, step=1, label="Min Parameters (B)")
param_max = gr.Slider(0, actual_max_params, actual_max_params, step=1, label="Max Parameters (B)")
with gr.Row():
date_preset = gr.Radio(
choices=["All Time", "Last Week", "Last Month", "Last Year", "Custom Range"],
value="All Time",
label="π
Release Date Filter"
)
with gr.Row(visible=False) as custom_date_row:
date_start = gr.Textbox(placeholder="YYYY-MM-DD", label="From")
date_end = gr.Textbox(placeholder="YYYY-MM-DD", label="To")
with gr.Row():
proprietary_check = gr.Checkbox(value=True, label="Include Proprietary (unknown params)")
moe_check = gr.Checkbox(value=False, label="MoE Only")
thinking_mode = gr.Radio(["Show All", "Hide Thinking", "Only Thinking"], value="Show All", label="Reasoning Models")
with gr.Row():
model_types = gr.CheckboxGroup(["Foundation", "Finetuned", "Merged"], value=["Foundation", "Finetuned", "Merged"], label="Model Types")
arch_dropdown = gr.Dropdown(["All"] + get_architecture_choices(initial_df), value="All", label="Architecture")
top_n_slider = gr.Slider(10, 500, DEFAULT_TOP_N, step=10, label="Top N")
with gr.Row():
balance_filter = gr.Radio(
choices=["Show All", "π Perfect (β₯0.7)", "π
Good (β₯0.5)", "βοΈ Basic (β₯0.3)"],
value="Show All",
label="π‘οΈ Robustness Filter",
info="Filters out models with weak spots."
)
search_box = gr.Textbox(label="π Search Models", placeholder="e.g., Llama, Qwen...")
leaderboard_table = gr.Dataframe(
datatype=["number", "markdown", "number", "str", "str", "str", "str"],
wrap=True, interactive=False
)
with gr.Row():
with gr.Column(scale=1):
export_btn = gr.Button("π₯ Export CSV", variant="primary", size="sm")
with gr.Column(scale=4):
export_file = gr.File(label="Download CSV", visible=False, height=50)
with gr.Tab("βοΈ Compare"):
gr.Markdown("### Compare Multiple Models")
with gr.Row():
with gr.Column(scale=2):
search_compare = gr.Textbox(label="π Search to Add Models", placeholder="Type model name...")
search_results_radio = gr.Radio(choices=[], label="Select from results", interactive=True)
add_model_btn = gr.Button("β Add Model", variant="secondary")
with gr.Column(scale=3):
compare_textbox = gr.Textbox(label="π Comparing (one per line)", lines=8, placeholder="Add models using search...")
compare_btn = gr.Button("π Generate Comparison", variant="primary")
with gr.Row():
radar_plot = gr.Plot(label="π Radar Chart")
compare_table = gr.Dataframe(label="π Comparison Table")
with gr.Tab("π¨ Custom Weights"):
gr.Markdown("### Create Your Own Preset")
with gr.Row():
with gr.Column():
w_textbook = gr.Slider(0, 1, 0.12, step=0.01, label="π Textbook Knowledge")
w_popculture = gr.Slider(0, 1, 0.08, step=0.01, label="π¬ Pop Culture")
w_worldmodel = gr.Slider(0, 1, 0.10, step=0.01, label="π World Model")
w_instruction = gr.Slider(0, 1, 0.10, step=0.01, label="π Instruction Following")
w_style = gr.Slider(0, 1, 0.25, step=0.01, label="βοΈ Writing Style")
with gr.Column():
w_originality = gr.Slider(0, 1, 0.10, step=0.01, label="β¨ Originality")
w_dialogue = gr.Slider(0, 1, 0.15, step=0.01, label="π¬ Dialogue Balance")
w_unbound = gr.Slider(0, 1, 0.05, step=0.01, label="π Unbound")
w_redundancy = gr.Slider(0, 1, 0.05, step=0.01, label="π§Ή Low Redundancy")
weight_sum_display = gr.Markdown("**Total Weight:** 1.00")
calc_custom_btn = gr.Button("π― Calculate Custom Score", variant="primary")
custom_results = gr.Dataframe(label="Top 50 Models")
with gr.Tab("π About"):
gr.Markdown(get_about_markdown(loader.last_updated))
# Diagnostics Tab (Conditional)
diag_btn, clear_btn = None, None
if SHOW_DIAGNOSTICS:
with gr.Tab("π οΈ Diagnostics"):
with gr.Row():
diag_btn = gr.Button("π§ͺ Run Diagnostics", variant="primary")
clear_btn = gr.Button("ποΈ Clear Cache & Reload Data", variant="stop")
cache_status = gr.Textbox(label="Status", lines=3, interactive=False)
diag_report = gr.Code(label="π Diagnostic Report", language="markdown")
with gr.Accordion("π Anomalies", open=False):
anomalies_table = gr.Dataframe(label="Detected Anomalies")
with gr.Accordion("π Statistics", open=False):
stats_table = gr.Dataframe(label="Normalization Statistics")
# === EVENT BINDINGS ===
# 1. Date Toggle
date_preset.change(lambda x: gr.update(visible=(x == "Custom Range")), inputs=[date_preset], outputs=[custom_date_row])
# 2. Filter Inputs Bundle
filter_inputs = [
df_state, # 0
preset_dropdown, # 1
search_box, # 2
param_min, # 3
param_max, # 4
proprietary_check, # 5
moe_check, # 6
thinking_mode, # 7
model_types, # 8
arch_dropdown, # 9
top_n_slider, # 10
balance_filter, # 11
date_preset, # 12
date_start, # 13
date_end # 14
]
filter_outputs = [leaderboard_table, filtered_raw_state]
# 3. Slider Interaction Wrapper
def slider_interaction(max_p_val, *args):
# args contains the values from filter_inputs
# CORRECTED INDICES:
# 0: df, 1: preset, 2: search
# 3: param_min, 4: param_max, 5: proprietary_check
p_min = args[3]
p_max = args[4]
prop_val = args[5]
is_restricted = (p_min > 0 or p_max < max_p_val)
new_prop_val = False if is_restricted else prop_val
new_interactive = not is_restricted
new_label = "Include Proprietary (Disabled by params)" if is_restricted else "Include Proprietary (unknown params)"
cb_update = gr.update(value=new_prop_val, label=new_label, interactive=new_interactive)
# Modify list for pipeline call
pipeline_args = list(args)
pipeline_args[5] = new_prop_val
table, raw = filter_leaderboard_pipeline(*pipeline_args)
return cb_update, table, raw
slider_args = [max_params_state] + filter_inputs
slider_outs = [proprietary_check] + filter_outputs
param_min.change(slider_interaction, inputs=slider_args, outputs=slider_outs)
param_max.change(slider_interaction, inputs=slider_args, outputs=slider_outs)
# 4. General Filter Change
for i, inp in enumerate(filter_inputs):
# Skip df(0), and parameters sliders (3, 4) to avoid double firing
if i not in [0, 3, 4]:
inp.change(filter_leaderboard_pipeline, inputs=filter_inputs, outputs=filter_outputs)
# 5. Refresh
def refresh_wrapper():
invalidate_cache()
new_df = get_dataframe()
if new_df is not None and not new_df.empty:
archs = ["All"] + get_architecture_choices(new_df)
return new_df, gr.update(choices=archs), get_header_content(new_df)
return new_df, gr.update(), get_header_content(None)
refresh_btn.click(refresh_wrapper, outputs=[df_state, arch_dropdown, header_md]).then(
filter_leaderboard_pipeline, inputs=filter_inputs, outputs=filter_outputs
)
# 6. Export
export_btn.click(export_handler, inputs=[filtered_raw_state], outputs=[export_file])
# 7. Compare
search_compare.change(search_models, inputs=[df_state, search_compare], outputs=[search_results_radio])
add_model_btn.click(lambda t, s: t + ("\n" if t else "") + s if s else t, inputs=[compare_textbox, search_results_radio], outputs=[compare_textbox])
compare_btn.click(compare_models, inputs=[df_state, compare_textbox], outputs=[radar_plot, compare_table])
# 8. Custom Weights
weight_inputs = [w_textbook, w_popculture, w_worldmodel, w_instruction, w_style, w_originality, w_dialogue, w_unbound, w_redundancy]
for w in weight_inputs: w.change(lambda *args: f"**Total Weight:** {sum(args):.2f}", inputs=weight_inputs, outputs=[weight_sum_display])
calc_custom_btn.click(
lambda df, *args: calculate_custom_score(df, {k: v for k, v in zip(['Textbook', 'Pop Culture', 'World Model', 'Instruction', 'Writing Style', 'Originality', 'Dialogue', 'Unbound', 'Redundancy'], args)}),
inputs=[df_state] + weight_inputs,
outputs=[custom_results]
)
# 9. Diagnostics
if SHOW_DIAGNOSTICS and diag_btn and clear_btn:
diag_btn.click(run_diagnostics, inputs=[df_state], outputs=[diag_report, anomalies_table, stats_table])
clear_btn.click(clear_and_reload_ui, outputs=[df_state, cache_status]).then(
filter_leaderboard_pipeline, inputs=filter_inputs, outputs=filter_outputs
)
# Load on Start
demo.load(filter_leaderboard_pipeline, inputs=filter_inputs, outputs=filter_outputs)
if __name__ == "__main__":
demo.launch() |