File size: 11,022 Bytes
1c249d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import pandas as pd
import numpy as np
import os, time, json
from datetime import datetime, timedelta
from config import *

class DataLoader:
    def __init__(self):
        self.df, self.last_updated = None, "Unknown"

    def load_data(self, force_refresh=False):
        """Загрузка данных с поддержкой принудительного обновления."""
        if force_refresh or self._needs_update():
            print("🔄 Cache expired or missing. Fetching fresh data...")
            try:
                self.df = self._process_data(pd.read_csv(CSV_URL, on_bad_lines='skip'))
                self._save_cache()
                print(f"✅ Data processed. Rows: {len(self.df)}")
            except Exception as e:
                print(f"⚠️ Error fetching data: {e}")
                self.df = pd.read_parquet(CACHE_FILE) if os.path.exists(CACHE_FILE) else pd.DataFrame()
                self._load_meta()
        else:
            print("⚡ Loading from cache.")
            self.df = pd.read_parquet(CACHE_FILE)
            self._load_meta()
        return self.df

    def _needs_update(self):
        """Проверка необходимости обновления кеша."""
        if not os.path.exists(CACHE_FILE) or not os.path.exists(META_FILE):
            return True
        try:
            with open(META_FILE) as f:
                return (time.time() - json.load(f).get('timestamp', 0)) > CACHE_DURATION
        except:
            return True

    def clear_cache(self):
        """Принудительная очистка всех файлов кеша."""
        deleted = []
        for file in [CACHE_FILE, META_FILE]:
            if os.path.exists(file):
                try:
                    os.remove(file)
                    deleted.append(file)
                except Exception as e:
                    print(f"⚠️ Failed to delete {file}: {e}")
        if deleted:
            print(f"🗑️ Cleared cache: {', '.join(deleted)}")
        return deleted

    def _save_cache(self):
        self.df.to_parquet(CACHE_FILE)
        with open(META_FILE, 'w') as f:
            json.dump({'timestamp': time.time()}, f)
        self.last_updated = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d %H:%M")

    def _load_meta(self):
        try:
            with open(META_FILE) as f:
                self.last_updated = datetime.fromtimestamp(json.load(f)['timestamp']).strftime("%Y-%m-%d %H:%M")
        except:
            pass

    def _clean_column(self, series, scale=1.0):
        """Безопасная очистка и масштабирование числовых колонок."""
        if pd.api.types.is_string_dtype(series) or series.dtype == 'object':
            series = series.astype(str).str.rstrip('%')
        series = pd.to_numeric(series, errors='coerce')
        return series / scale if scale > 1 else series

    def _get_model_type(self, row):
        """Определение типа модели для сортировки."""
        # Returns: (sort_value, short_code, full_name)
        if pd.isna(row.get('Total Parameters')) or row.get('Total Parameters', 0) <= 0:
            return (3, 'P', 'Proprietary')
        
        is_foundation = row.get('Is Foundation', False)
        is_merged = row.get('Is Merged', False)
        
        if is_foundation and not is_merged:
            return (0, 'B', 'Base')
        if is_merged:
            return (2, 'M', 'Merge')
        if row.get('Is Finetuned', False) and not is_merged:
            return (1, 'F', 'Finetune')
            
        return (4, '', 'Unknown')

    def _process_data(self, df):
        """Основной пайплайн обработки."""
        print("⚙️ Processing pipeline started...")
        df.columns = df.columns.str.strip()

        # === 1. COLUMN GROUPS ===
        col_groups = {
            'percentage': (['Textbook', 'Pop Culture', 'Dialogue_Percentage', 'Verb_to_Noun_Ratio', 
                           'Show Rec Correlation', 'avg_length_error_pct'], 100.0),
            'already_norm': (['avg_writing_style_score', 'originality_score', 'internal_semantic_redundancy',
                             'lexical_stuckness', 'wm_recipe_percent_error_score', 'wm_geoguessr_mae_score',
                             'wm_weight_percent_error_score', 'wm_music_mae_score'], 1.0),
            'numeric': (['Total Parameters', 'Active Parameters', 'Repetition Interrupts', 'Avg Thinking Chars'], 1.0),
            'scale_10': (['avg_nsfw_score', 'avg_dark_score', 'Hazardous', 'Entertainment', 
                         'SocPol', 'W/10-Direct', 'W/10-Adherence'], 10.0)
        }

        for group, (cols, scale) in col_groups.items():
            for col in cols:
                if col in df.columns:
                    df[col] = self._clean_column(df[col], scale)
                    if group == 'already_norm':
                        df[col] = df[col].clip(0, 1.0)
                else:
                    df[col] = np.nan

        # === 2. BOOLEANS & STRINGS ===
        if 'Is Thinking Model' in df.columns:
            df['Is Thinking Model'] = (
                df['Is Thinking Model'].astype(str).fillna('FALSE').str.strip().str.upper() == 'TRUE'
            )
        else:
            df['Is Thinking Model'] = False

        df['Architecture'] = df.get('Architecture', 'Unknown').fillna('Unknown').replace('null', 'Unknown')

        # === 3. MODEL TYPES & DATES ===
        type_data = df.apply(self._get_model_type, axis=1)
        df['_type_sort'] = type_data.apply(lambda x: x[0])
        df['Type_Code'] = type_data.apply(lambda x: x[1])
        df['Type_Name'] = type_data.apply(lambda x: x[2])

        if 'Test Date' in df.columns:
            df['Test Date'] = pd.to_datetime(df['Test Date'], format='%m/%d/%Y', errors='coerce')
            week_ago = datetime.now() - timedelta(days=7)
            df['Is_New'] = df['Test Date'].apply(lambda x: True if pd.notna(x) and x >= week_ago else False)
            df['Test Date'] = df['Test Date'].dt.strftime('%Y-%m-%d')
        else:
            df['Is_New'] = False

        # === 4. PENALTIES ===
        df['penalty_repetition'] = REPETITION_BASE ** df['Repetition Interrupts'].fillna(0)
        
        chars = df['Avg Thinking Chars'].fillna(0)
        df['penalty_thinking'] = np.where(
            df['Is Thinking Model'] & (chars > THINKING_THRESHOLD),
            np.power(THINKING_THRESHOLD / (chars + 1e-6), THINKING_PENALTY_POWER).clip(upper=1.0),
            1.0
        )

        # === 5. GAUSSIAN SCORES ===
        df['gauss_Dialogue'] = self._gaussian_score(df['Dialogue_Percentage'], GAUSSIAN_DIALOGUE_TARGET, GAUSSIAN_DIALOGUE_SIGMA)
        df['gauss_VerbNoun'] = self._gaussian_score(df['Verb_to_Noun_Ratio'], GAUSSIAN_VERBNOUN_TARGET, GAUSSIAN_VERBNOUN_SIGMA)

        # === 6. NORMALIZATION ===
        norm_config = {
            # Direct normalization (Higher = Better)
            'norm_Textbook': ('Textbook', 'direct'),
            'norm_PopCulture': ('Pop Culture', 'direct'),
            'norm_ShowRec': ('Show Rec Correlation', 'direct'),
            'norm_Style': ('avg_writing_style_score', 'direct'),
            'norm_Originality': ('originality_score', 'direct'),
            'norm_NSFW': ('avg_nsfw_score', 'direct'),
            'norm_Dark': ('avg_dark_score', 'direct'),
            'norm_Hazardous': ('Hazardous', 'direct'),
            'norm_Entertainment': ('Entertainment', 'direct'),
            'norm_Instruction': ('W/10-Adherence', 'direct'),
            'norm_Unbound_Direct': ('W/10-Direct', 'direct'),
            # World Model (Direct)
            'norm_Recipe': ('wm_recipe_percent_error_score', 'direct'),
            'norm_Geo': ('wm_geoguessr_mae_score', 'direct'),
            'norm_Weight': ('wm_weight_percent_error_score', 'direct'),
            'norm_Music': ('wm_music_mae_score', 'direct'),
            # Inverse normalization (Higher = Worse)
            'inv_Semantic': ('internal_semantic_redundancy', 'inverse'),
            'inv_Lexical': ('lexical_stuckness', 'inverse'),
            'inv_LengthErr': ('avg_length_error_pct', 'inverse')
        }

        for dest, (src, mode) in norm_config.items():
            if src in df.columns:
                df[dest] = self._inverse_normalize(df[src]) if mode == 'inverse' else self._robust_normalize(df[src])
            else:
                df[dest] = np.nan

        # === 7. COMPOSITES ===
        composites = {
            'Composite_WorldModel': ['norm_Recipe', 'norm_Geo', 'norm_Weight', 'norm_Music'],
            'Composite_Unbound': ['norm_Unbound_Direct', 'norm_Entertainment', 'norm_Hazardous'],
            'Composite_Redundancy': ['inv_Semantic', 'inv_Lexical']
        }
        for comp, cols in composites.items():
            df[comp] = df[cols].mean(axis=1, skipna=False)

        # === 8. SMART NA FILLING (For Sorting) ===
        print("🔧 Applying smart NA handling for sorting...")
        higher_is_better = [
            'Show Rec Correlation', 'norm_Textbook', 'norm_PopCulture', 'norm_ShowRec',
            'norm_Style', 'norm_Originality', 'Composite_WorldModel', 'Composite_Unbound',
            'norm_Recipe', 'norm_Geo', 'norm_Weight', 'norm_Music'
        ]
        for col in higher_is_better:
            if col in df.columns:
                df[col] = df[col].fillna(-99999)

        lower_is_better = [
            'avg_length_error_pct', 'internal_semantic_redundancy', 'lexical_stuckness',
            'inv_Semantic', 'inv_Lexical', 'inv_LengthErr'
        ]
        for col in lower_is_better:
            if col in df.columns:
                df[col] = df[col].fillna(99999)

        print("✅ Processing complete!")
        return df

    def _robust_normalize(self, series):
        """Robust normalization with divide-by-zero protection."""
        valid = series.dropna()
        if valid.empty or valid.std() < MIN_STD_THRESHOLD:
            return pd.Series(np.nan, index=series.index)
        q05, q95 = valid.quantile(ROBUST_QUANTILE_LOW), valid.quantile(ROBUST_QUANTILE_HIGH)
        denominator = q95 - q05
        if abs(denominator) < MIN_STD_THRESHOLD:
            return pd.Series(np.nan, index=series.index)
        return (series.clip(q05, q95) - q05) / denominator

    def _inverse_normalize(self, series):
        """Inverse robust normalization."""
        valid = series.dropna()
        if valid.empty or valid.std() < MIN_STD_THRESHOLD:
            return pd.Series(np.nan, index=series.index)
        p5, p95 = valid.quantile(ROBUST_QUANTILE_LOW), valid.quantile(ROBUST_QUANTILE_HIGH)
        denominator = p95 - p5
        if abs(denominator) < MIN_STD_THRESHOLD:
            return pd.Series(np.nan, index=series.index)
        return (p95 - series.clip(p5, p95)) / denominator

    def _gaussian_score(self, series, target, sigma):
        return np.exp(-((series - target) ** 2) / (2 * sigma ** 2))

# Create instance
loader = DataLoader()