Upload 4 files
Browse files- README.md +20 -14
- app.py +113 -0
- clients/test_client.py +9 -0
- requirements.txt +7 -0
README.md
CHANGED
|
@@ -1,14 +1,20 @@
|
|
| 1 |
-
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo: indigo
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: veureu-svision
|
| 3 |
+
emoji: 🦎
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: indigo
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: "4.44.1"
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# 🦎 veureu-svision (Salamandra-Vision 7B · ZeroGPU)
|
| 13 |
+
|
| 14 |
+
## Endpoints
|
| 15 |
+
- **`/api/predict`** (Gradio): **batch** — entrada `[[<file1>, <file2>, ...], "{...context_json...}", 256, 0.7]` → salida `["desc1", "desc2", ...]`.
|
| 16 |
+
- **`/api/describe_raw`** (multipart): `image`, `text`, `max_new_tokens`, `temperature` → `{"text": "..."}`.
|
| 17 |
+
- **`/api/describe`** (Gradio UI single).
|
| 18 |
+
|
| 19 |
+
Compatibilidad con el `engine`: el `VisionClient` del engine llama a **`api_name="/predict"`** con *lista de imágenes* y **`context_json`**.
|
| 20 |
+
|
app.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py — veureu/schat (Salamandra 7B Instruct · ZeroGPU) — compatible con ENGINE
|
| 2 |
+
from __future__ import annotations
|
| 3 |
+
import os, json
|
| 4 |
+
from typing import List, Dict, Optional, Tuple
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import spaces
|
| 8 |
+
import torch
|
| 9 |
+
from transformers import (
|
| 10 |
+
AutoTokenizer,
|
| 11 |
+
AutoModelForCausalLM,
|
| 12 |
+
TextIteratorStreamer,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
# ===== Config =====
|
| 16 |
+
MODEL_ID = os.environ.get("MODEL_ID", "BSC-LT/salamandra-7b-instruct")
|
| 17 |
+
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 18 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
+
|
| 20 |
+
_tok = None
|
| 21 |
+
_model = None
|
| 22 |
+
|
| 23 |
+
def _lazy_load() -> Tuple[AutoTokenizer, AutoModelForCausalLM]:
|
| 24 |
+
global _tok, _model
|
| 25 |
+
if _tok is None or _model is None:
|
| 26 |
+
_tok = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True, trust_remote_code=True)
|
| 27 |
+
_model = AutoModelForCausalLM.from_pretrained(
|
| 28 |
+
MODEL_ID,
|
| 29 |
+
torch_dtype=DTYPE,
|
| 30 |
+
low_cpu_mem_usage=True,
|
| 31 |
+
use_safetensors=True,
|
| 32 |
+
trust_remote_code=True,
|
| 33 |
+
device_map=None,
|
| 34 |
+
).to(DEVICE)
|
| 35 |
+
return _tok, _model
|
| 36 |
+
|
| 37 |
+
def _build_prompt(prompt: str, system: Optional[str]) -> str:
|
| 38 |
+
"""
|
| 39 |
+
Si el tokenizer posee 'chat_template', lo usamos con mensajes [system?, user].
|
| 40 |
+
Si no, hacemos un prompt plano con system arriba.
|
| 41 |
+
"""
|
| 42 |
+
tok, _ = _lazy_load()
|
| 43 |
+
messages = []
|
| 44 |
+
if system and system.strip():
|
| 45 |
+
messages.append({"role": "system", "content": system.strip()})
|
| 46 |
+
messages.append({"role": "user", "content": prompt})
|
| 47 |
+
|
| 48 |
+
chat_template = getattr(tok, "chat_template", None)
|
| 49 |
+
if chat_template:
|
| 50 |
+
return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 51 |
+
# Fallback sin chat template
|
| 52 |
+
sys_part = (f"<<SYS>>\n{system.strip()}\n<</SYS>>\n\n" if system and system.strip() else "")
|
| 53 |
+
return sys_part + f"### Instrucción\n{prompt}\n\n### Respuesta\n"
|
| 54 |
+
|
| 55 |
+
@spaces.GPU # usa GPU si está disponible (ZeroGPU)
|
| 56 |
+
def _generate(
|
| 57 |
+
prompt: str,
|
| 58 |
+
system: str = "",
|
| 59 |
+
max_new_tokens: int = 512,
|
| 60 |
+
temperature: float = 0.7,
|
| 61 |
+
top_p: float = 0.95,
|
| 62 |
+
) -> str:
|
| 63 |
+
tok, model = _lazy_load()
|
| 64 |
+
text = _build_prompt(prompt, system or "")
|
| 65 |
+
inputs = tok(text, return_tensors="pt").to(DEVICE)
|
| 66 |
+
|
| 67 |
+
with torch.inference_mode():
|
| 68 |
+
out = model.generate(
|
| 69 |
+
**inputs,
|
| 70 |
+
max_new_tokens=int(max_new_tokens),
|
| 71 |
+
temperature=float(temperature),
|
| 72 |
+
top_p=float(top_p),
|
| 73 |
+
do_sample=True if temperature > 0 else False,
|
| 74 |
+
pad_token_id=tok.eos_token_id,
|
| 75 |
+
eos_token_id=tok.eos_token_id,
|
| 76 |
+
)
|
| 77 |
+
return tok.decode(out[0], skip_special_tokens=True).strip()
|
| 78 |
+
|
| 79 |
+
# ------------------- Gradio Endpoints -------------------
|
| 80 |
+
# 1) /predict — lo que espera el ENGINE (solo 'prompt' → string)
|
| 81 |
+
def predict_for_engine(prompt: str) -> str:
|
| 82 |
+
return _generate(prompt=prompt, system="", max_new_tokens=512, temperature=0.7, top_p=0.95)
|
| 83 |
+
|
| 84 |
+
# 2) /generate — más controles (prompt + system + params)
|
| 85 |
+
def generate_advanced(prompt: str, system: str, max_new_tokens: int, temperature: float, top_p: float) -> str:
|
| 86 |
+
return _generate(prompt=prompt, system=system, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p)
|
| 87 |
+
|
| 88 |
+
# ------------------- HTTP (opcional, clientes puros) -------------------
|
| 89 |
+
# Si quieres, puedes añadir un endpoint HTTP POST /generate (FastAPI),
|
| 90 |
+
# pero con Gradio Client es suficiente para engine/local.
|
| 91 |
+
|
| 92 |
+
# ------------------- UI -------------------
|
| 93 |
+
with gr.Blocks(title="Salamandra 7B Instruct · ZeroGPU") as demo:
|
| 94 |
+
gr.Markdown("## Salamandra-7B-Instruct · ZeroGPU\nTexto → respuesta instruccional.")
|
| 95 |
+
with gr.Row():
|
| 96 |
+
with gr.Column(scale=1):
|
| 97 |
+
in_system = gr.Textbox(label="System (opcional)", value="")
|
| 98 |
+
in_prompt = gr.Textbox(label="Prompt", placeholder="Escribe tu instrucción…", lines=6)
|
| 99 |
+
max_new = gr.Slider(16, 2048, value=512, step=16, label="max_new_tokens")
|
| 100 |
+
temp = gr.Slider(0.0, 1.5, value=0.7, step=0.05, label="temperature")
|
| 101 |
+
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.01, label="top_p")
|
| 102 |
+
btn = gr.Button("Generar", variant="primary")
|
| 103 |
+
with gr.Column(scale=1):
|
| 104 |
+
out = gr.Textbox(label="Respuesta", lines=18)
|
| 105 |
+
|
| 106 |
+
btn.click(generate_advanced, [in_prompt, in_system, max_new, temp, top_p], out, api_name="generate")
|
| 107 |
+
|
| 108 |
+
# Endpoint minimalista compatible con el ENGINE (/predict: solo prompt)
|
| 109 |
+
in_prompt_engine = gr.Textbox(label="Prompt (ENGINE)", value="Di hola en una frase.")
|
| 110 |
+
out_engine = gr.Textbox(label="Respuesta (ENGINE)")
|
| 111 |
+
gr.Button("Probar /predict").click(predict_for_engine, [in_prompt_engine], out_engine, api_name="predict")
|
| 112 |
+
|
| 113 |
+
demo.queue(concurrency_count=1, max_size=16).launch()
|
clients/test_client.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from gradio_client import Client
|
| 2 |
+
c = Client("https://veureu-schat.hf.space")
|
| 3 |
+
resp = c.predict(
|
| 4 |
+
"Resumeix el text següent en català en 3 punts.", # prompt
|
| 5 |
+
"Ets un ajudant que respon breu i clar.", # system
|
| 6 |
+
512, 0.7, 0.95,
|
| 7 |
+
api_name="/generate"
|
| 8 |
+
)
|
| 9 |
+
print(resp)
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.44.1
|
| 2 |
+
spaces>=0.25.0
|
| 3 |
+
transformers>=4.44.0
|
| 4 |
+
torch>=2.2
|
| 5 |
+
accelerate>=0.30.0
|
| 6 |
+
safetensors>=0.4.2
|
| 7 |
+
sentencepiece>=0.1.99
|