Spaces:
Running
Running
| import torch | |
| import gradio as gr | |
| from transformers import AutoModel, pipeline, AutoTokenizer | |
| path = "radna/Triton-InternVL2-2B" | |
| model = ( | |
| AutoModel.from_pretrained( | |
| path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True | |
| ) | |
| .eval() | |
| .cuda() | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) | |
| inference = pipeline(task="visual-question-answering", model=model, tokenizer=tokenizer) | |
| def predict(input_img, questions): | |
| try: | |
| predictions = inference(question=questions, image=input_img) | |
| return str(predictions) | |
| except Exception as e: | |
| # 捕获异常,并将错误信息转换为字符串 | |
| error_message = str(e) | |
| # 抛出gradio.Error来展示错误弹窗 | |
| raise gr.Error(error_message, duration=25) | |
| gradio_app = gr.Interface( | |
| predict, | |
| inputs=[ | |
| gr.Image(label="Select A Image", sources=["upload", "webcam"], type="pil"), | |
| "text", | |
| ], | |
| outputs="text", | |
| title="Plz ask my anything", | |
| ) | |
| if __name__ == "__main__": | |
| gradio_app.launch(show_error=True, debug=True) | |