Spaces:
Sleeping
Sleeping
| import os | |
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| # Load the fine-tuned model and tokenizer | |
| model_path = "path/to/your/fine-tuned-model" | |
| tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| model = AutoModelForCausalLM.from_pretrained(model_path) | |
| # Streamlit app layout | |
| st.title("๐ค Fine-tuned Arabic Mistral Model ๐ง") | |
| # Input text area for user query | |
| user_query = st.text_area("โจ Enter your query in Arabic:", height=100) | |
| # Sliders for temperature and max length (as in your original code) | |
| # Button to trigger the query | |
| if st.button("๐ช Generate Response"): | |
| if user_query: | |
| # Tokenize input and generate response | |
| inputs = tokenizer(user_query, return_tensors="pt") | |
| outputs = model.generate( | |
| inputs.input_ids, | |
| max_length=max_length, | |
| temperature=temperature | |
| ) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Display the response | |
| st.markdown("๐ฎ Response from Fine-tuned Arabic Model:") | |
| st.write(response) | |
| # Save query and response to session state (as in your original code) | |
| else: | |
| st.write("๐จ Please enter a query.") | |
| # History display and clear button (as in your original code) |