Spaces:
Sleeping
Sleeping
File size: 16,259 Bytes
2ea61f5 7f4f096 2ea61f5 7f4f096 34ecd50 7f4f096 34ecd50 7f4f096 2ea61f5 7f4f096 2ea61f5 7f4f096 2ea61f5 7f4f096 2ea61f5 7f4f096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.decomposition import PCA
import time
import json
from typing import List, Dict, Tuple, Optional
from datetime import datetime
import warnings
from sentence_transformers import SentenceTransformer
import matplotlib.pyplot as plt
import seaborn as sns
import io
import base64
import os
warnings.filterwarnings("ignore")
# Configuration for Sentence Transformers
EMBEDDING_CONFIG = {
"model": "google/embeddinggemma-300m",
"similarity_threshold": 0.70,
"high_similarity_threshold": 0.85,
"normalize_embeddings": True,
}
class BlogTitleAnalyzer:
def __init__(self, config=EMBEDDING_CONFIG):
self.config = config
self.model_name = config["model"]
self.normalize = config.get("normalize_embeddings", True)
self.existing_titles = []
self.existing_metadata = []
self.existing_embeddings = None
# Initialize SentenceTransformer model with authentication for gated models
if self.model_name.startswith("google/"):
# Set Hugging Face token for gated Google models
# hf_token = st.secrets.get(
# "HUGGINGFACE_TOKEN", os.getenv("HUGGINGFACE_TOKEN")
# )
# if hf_token:
self.model = SentenceTransformer(
self.model_name, use_auth_token=hf_token
)
# else:
# raise ValueError(
# "Hugging Face token required for gated model. Please add it to Streamlit secrets."
# )
else:
self.model = SentenceTransformer(self.model_name)
# ---- Embedding helpers ----
def _embed(self, texts):
# Accept str or list[str]; always return list[list[float]]
if isinstance(texts, str):
inputs = [texts]
else:
inputs = list(texts)
embeddings = self.model.encode(inputs, convert_to_numpy=True)
if self.normalize:
embeddings = self._l2_normalize_rows(embeddings)
return embeddings.tolist()
return embeddings.tolist()
@staticmethod
def _l2_normalize_rows(arr: np.ndarray) -> np.ndarray:
norms = np.linalg.norm(arr, axis=1, keepdims=True)
norms[norms == 0] = 1.0
return arr / norms
# ---- Public API ----
def generate_embedding(self, title: str) -> np.ndarray:
vec = np.array(self._embed(title)[0], dtype=np.float32)
return vec
def generate_embeddings_batch(self, titles) -> np.ndarray:
vecs = np.array(self._embed(titles), dtype=np.float32)
return vecs
def load_existing_titles(self, titles, metadata=None):
self.existing_titles = list(titles)
self.existing_metadata = (
list(metadata) if metadata is not None else [{} for _ in titles]
)
self.existing_embeddings = self.generate_embeddings_batch(self.existing_titles)
def check_similarity_against_existing(self, new_title: str, top_k: int = 5):
if self.existing_embeddings is None or len(self.existing_titles) == 0:
return []
new_vec = self.generate_embedding(new_title).reshape(1, -1)
sims = cosine_similarity(new_vec, self.existing_embeddings)[0]
idx_sorted = np.argsort(-sims)[:top_k]
results = []
for idx in idx_sorted:
results.append(
{
"title": self.existing_titles[idx],
"metadata": self.existing_metadata[idx],
"similarity": float(sims[idx]),
}
)
return results
def batch_check_similarity_against_existing(self, new_titles, top_k: int = 5):
if self.existing_embeddings is None or len(self.existing_titles) == 0:
return {t: [] for t in new_titles}
new_vecs = self.generate_embeddings_batch(new_titles)
sims = cosine_similarity(new_vecs, self.existing_embeddings) # [M, N]
results = {}
for i, t in enumerate(new_titles):
row = sims[i]
idx_sorted = np.argsort(-row)[:top_k]
hits = []
for idx in idx_sorted:
hits.append(
{
"title": self.existing_titles[idx],
"metadata": self.existing_metadata[idx],
"similarity": float(row[idx]),
}
)
results[t] = hits
return results
def simple_deduplication(analyzer, new_titles, threshold=0.7):
"""
Simple deduplication of new titles by comparing pairwise similarities.
Removes titles that are overly similar (> threshold) based on rules.
"""
embeddings = analyzer.generate_embeddings_batch(new_titles)
similarity_matrix = cosine_similarity(embeddings)
n_titles = len(new_titles)
to_remove = set()
decisions = []
for i in range(n_titles):
for j in range(i + 1, n_titles):
if similarity_matrix[i][j] > threshold:
title_A = new_titles[i]
title_B = new_titles[j]
if i in to_remove or j in to_remove:
continue
# Check against existing titles
sims_A = analyzer.check_similarity_against_existing(title_A)
sims_B = analyzer.check_similarity_against_existing(title_B)
max_sim_A = max([s["similarity"] for s in sims_A], default=0.0)
max_sim_B = max([s["similarity"] for s in sims_B], default=0.0)
if max_sim_A > max_sim_B:
to_remove.add(i)
decisions.append(
{
"remove": title_A,
"keep": title_B,
"reason": "Title A is more similar to existing content",
"pairwise_similarity": float(similarity_matrix[i][j]),
}
)
else:
to_remove.add(j)
decisions.append(
{
"remove": title_B,
"keep": title_A,
"reason": "Title B is more similar to existing content",
"pairwise_similarity": float(similarity_matrix[i][j]),
}
)
# Final report
report_rows = []
for d in decisions:
report_rows.append(
{
"Action": "REMOVE",
"Title": d["remove"],
"Reason": d["reason"],
"Pairwise_Similarity": round(d["pairwise_similarity"], 3),
"Keep_Instead": d["keep"],
}
)
for i, t in enumerate(new_titles):
if i not in to_remove:
report_rows.append(
{
"Action": "KEEP",
"Title": t,
"Reason": "No high similarity conflicts",
"Pairwise_Similarity": "N/A",
"Keep_Instead": "N/A",
}
)
return pd.DataFrame(report_rows)
def create_new_vs_existing_table(
analyzer: BlogTitleAnalyzer, new_titles: List[str]
) -> pd.DataFrame:
"""Create a comprehensive table showing new titles vs existing titles comparisons"""
table_data = []
for new_title in new_titles:
# Generate embedding for new title
new_embedding = analyzer.generate_embedding(new_title)
# Calculate similarities against all existing titles
similarities = cosine_similarity([new_embedding], analyzer.existing_embeddings)[
0
]
# Add comparison with every existing title
for idx, existing_title in enumerate(analyzer.existing_titles):
table_data.append(
{
"New Title": new_title,
"Existing Title": existing_title,
"Similarity Score": round(similarities[idx], 3),
}
)
df = pd.DataFrame(table_data)
return df
def create_new_vs_new_table(
analyzer: BlogTitleAnalyzer, new_titles: List[str]
) -> pd.DataFrame:
"""Create a table showing comparisons between new titles themselves"""
table_data = []
# Generate embeddings for all new titles
new_embeddings = analyzer.generate_embeddings_batch(new_titles)
# Compare each new title with every other new title
for i, title1 in enumerate(new_titles):
for j, title2 in enumerate(new_titles):
if i != j: # Don't compare a title with itself
similarity = cosine_similarity(
[new_embeddings[i]], [new_embeddings[j]]
)[0][0]
table_data.append(
{
"Title 1": title1,
"Title 2": title2,
"Similarity Score": round(similarity, 3),
}
)
df = pd.DataFrame(table_data)
return df
def run_title_similarity_analysis(existing_titles: List[str], new_titles: List[str]):
"""Run comprehensive title similarity analysis"""
# Initialize analyzer
analyzer = BlogTitleAnalyzer()
# Load existing titles
analyzer.load_existing_titles(existing_titles)
# Create comparison tables
new_vs_existing_table = create_new_vs_existing_table(analyzer, new_titles)
new_vs_new_table = create_new_vs_new_table(analyzer, new_titles)
dedup_report = simple_deduplication(analyzer, new_titles)
return analyzer, new_vs_existing_table, new_vs_new_table, dedup_report
# Streamlit UI
st.set_page_config(
page_title="Blog Title Checker",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded",
)
st.title("π Blog Title Similarity Checker")
st.markdown(
"Analyze and deduplicate blog titles using AI-powered similarity detection."
)
# Sidebar with instructions
st.sidebar.header("Instructions")
st.sidebar.markdown(
"""
1. **Existing Titles**: Enter your current blog titles (one per line)
2. **New Titles**: Enter new title ideas to check (one per line)
3. **Analysis**: Click "Analyze Titles" to run the similarity check
4. **Results**: View deduplication recommendations and download detailed reports
**Note**: The app uses Sentence Transformers for embedding and compares titles using cosine similarity.
"""
)
# Create two columns for input
col1, col2 = st.columns(2)
with col1:
st.subheader("Existing Blog Titles")
st.markdown("Enter your current blog titles (one per line):")
existing_titles_input = st.text_area(
"Existing Titles",
height=300,
placeholder="The True Cost of Blown-In Insulation in 2025: A Detailed Breakdown\nCalculating the ROI of Your Attic Insulation Upgrade: A Step-by-Step Guide\nUnlocking Savings: Are There Government Rebates or Tax Credits for Blown-In Insulation?",
)
with col2:
st.subheader("New Titles to Check")
st.markdown("Enter new title ideas to analyze (one per line):")
new_titles_input = st.text_area(
"New Titles",
height=300,
placeholder="Can Your Walls Be Insulated for Better Indoor Air Quality?\nHow Does Your Home's Insulation Impact Seasonal Allergies?\nIs Cold Air Leaking into Your Living Spaces, and What Can You Do?",
)
# Process input
existing_titles = [
title.strip() for title in existing_titles_input.split("\n") if title.strip()
]
new_titles = [title.strip() for title in new_titles_input.split("\n") if title.strip()]
# Analysis button
if st.button("π Analyze Titles", type="primary", use_container_width=True):
if not existing_titles:
st.error("Please enter at least one existing blog title.")
elif not new_titles:
st.error("Please enter at least one new title to analyze.")
else:
with st.spinner("Analyzing titles... This may take a moment."):
try:
analyzer, new_vs_existing_df, new_vs_new_df, dedup_report = (
run_title_similarity_analysis(existing_titles, new_titles)
)
# Store results in session state
st.session_state["analysis_results"] = {
"analyzer": analyzer,
"new_vs_existing_df": new_vs_existing_df,
"new_vs_new_df": new_vs_new_df,
"dedup_report": dedup_report,
}
st.success("β
Analysis completed successfully!")
except Exception as e:
st.error(f"An error occurred during analysis: {str(e)}")
# Display results if available
if "analysis_results" in st.session_state:
results = st.session_state["analysis_results"]
# Summary statistics
st.header("π Summary Statistics")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Existing Titles", len(existing_titles))
with col2:
st.metric("Total New Titles", len(new_titles))
with col3:
duplicates_found = len(
results["dedup_report"][results["dedup_report"]["Action"] == "REMOVE"]
)
st.metric("Duplicates Found", duplicates_found)
with col4:
unique_titles = len(
results["dedup_report"][results["dedup_report"]["Action"] == "KEEP"]
)
st.metric("Unique Titles to Keep", unique_titles)
# Deduplication Results
st.header("π― Deduplication Recommendations")
# Filter to show only duplicates
duplicates_df = results["dedup_report"][
results["dedup_report"]["Action"] == "REMOVE"
]
keep_df = results["dedup_report"][results["dedup_report"]["Action"] == "KEEP"]
if not duplicates_df.empty:
st.subheader("ποΈ Titles to Remove (Duplicates)")
st.dataframe(
duplicates_df[["Title", "Reason", "Pairwise_Similarity", "Keep_Instead"]],
use_container_width=True,
hide_index=True,
)
st.subheader("β
Titles to Keep")
st.dataframe(
keep_df[["Title", "Reason"]], use_container_width=True, hide_index=True
)
# Download section
st.header("πΎ Download Analysis Reports")
download_col1, download_col2, download_col3 = st.columns(3)
with download_col1:
# New vs Existing comparison
csv1 = results["new_vs_existing_df"].to_csv(index=False).encode("utf-8")
st.download_button(
label="π₯ New vs Existing Titles",
data=csv1,
file_name="new_vs_existing_titles.csv",
mime="text/csv",
use_container_width=True,
)
with download_col2:
# New vs New comparison
csv2 = results["new_vs_new_df"].to_csv(index=False).encode("utf-8")
st.download_button(
label="π₯ New vs New Titles",
data=csv2,
file_name="new_vs_new_titles.csv",
mime="text/csv",
use_container_width=True,
)
with download_col3:
# Deduplication report
csv3 = results["dedup_report"].to_csv(index=False).encode("utf-8")
st.download_button(
label="π₯ Deduplication Report",
data=csv3,
file_name="deduplication_recommendations.csv",
mime="text/csv",
use_container_width=True,
)
# Detailed analysis section (expandable)
with st.expander("π¬ Detailed Analysis"):
tab1, tab2 = st.tabs(["New vs Existing Comparisons", "New vs New Comparisons"])
with tab1:
st.dataframe(
results["new_vs_existing_df"], use_container_width=True, hide_index=True
)
with tab2:
st.dataframe(
results["new_vs_new_df"], use_container_width=True, hide_index=True
)
# Footer
st.markdown("---")
st.markdown(
"π‘ **Tip**: For best results, ensure your titles are well-written and descriptive. The similarity analysis works best with titles that have clear semantic meaning."
) |