Spaces:
Sleeping
Sleeping
File size: 28,342 Bytes
7d0c82c 0414451 7d0c82c ddb1d4e 7d0c82c ddb1d4e 83123ec ddb1d4e 5129b9d ddb1d4e 5129b9d ddb1d4e 5129b9d 7d0c82c 83123ec 7d0c82c 5129b9d 83123ec 7d0c82c 5129b9d 7d0c82c ddb1d4e 7d0c82c 2338c46 7d0c82c fc15652 7d0c82c ac9d3f4 7d0c82c ac9d3f4 7d0c82c ac9d3f4 7d0c82c 886558c 7d0c82c cf9c9bb 7d0c82c f47aa21 7d0c82c f47aa21 7d0c82c 31cbca7 7d0c82c f47aa21 7d0c82c f47aa21 ac9d3f4 f47aa21 ac9d3f4 7d0c82c ac9d3f4 f47aa21 ac9d3f4 7d0c82c f47aa21 7d0c82c 2338c46 7d0c82c 2338c46 7d0c82c 2338c46 7d0c82c 2338c46 7d0c82c 2338c46 7d0c82c b124e72 7d0c82c 5129b9d 7d0c82c 5129b9d 7d0c82c 5129b9d 7d0c82c 5129b9d 629509e 5129b9d 7d0c82c 5129b9d 7d0c82c 83123ec 7d0c82c 83123ec 5129b9d ddb1d4e 83123ec 7d0c82c 62d78bf 7d0c82c 62d78bf 7d0c82c 83123ec ddb1d4e 5129b9d 83123ec 5129b9d 83123ec 5129b9d 7d0c82c 62d78bf f8a48f3 62d78bf f8a48f3 7d0c82c 2338c46 7d0c82c ddb1d4e 5129b9d ddb1d4e 5129b9d 7d0c82c 5129b9d 7d0c82c ddb1d4e 7d0c82c 5129b9d 7d0c82c 60927c5 7d0c82c 60927c5 7d0c82c 2338c46 7d0c82c 5129b9d 83123ec ddb1d4e 7d0c82c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
#!/usr/bin/env python3
"""
AusCyberBench Evaluation Dashboard
Interactive Gradio Space for benchmarking LLMs on Australian cybersecurity knowledge
"""
import gradio as gr
import spaces
import torch
import gc
import json
import re
import time
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pathlib import Path
from collections import defaultdict
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import numpy as np
# Australian color scheme
AUSSIE_GREEN = '#008751'
AUSSIE_GOLD = '#FFB81C'
# Model categories - proven stable models
MODELS_BY_CATEGORY = {
"β
Recommended (Tested)": [
"microsoft/Phi-3-mini-4k-instruct", # Proven stable
"microsoft/Phi-3.5-mini-instruct", # Works well
"Qwen/Qwen2.5-3B-Instruct", # Just tested 55.6%! β
"Qwen/Qwen2.5-7B-Instruct", # Good performance
"deepseek-ai/deepseek-llm-7b-chat", # Previously tested 55%+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", # Previously tested 33%+
],
"π‘οΈ Cybersecurity-Focused": [
"deepseek-ai/deepseek-coder-6.7b-instruct", # Code security
"WizardLM/WizardCoder-Python-7B-V1.0", # Wizard Coder
"bigcode/starcoder2-7b", # StarCoder2
"meta-llama/CodeLlama-7b-Instruct-hf", # CodeLlama
"Salesforce/codegen25-7b-instruct", # CodeGen
],
"Small Models (1-4B)": [
"microsoft/Phi-3-mini-4k-instruct",
"microsoft/Phi-3.5-mini-instruct",
"Qwen/Qwen2.5-3B-Instruct",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
# Removed gated models: google/gemma-2-2b-it, meta-llama/Llama-3.2-3B-Instruct
# Removed: stabilityai/stablelm-2-1_6b-chat (0% accuracy)
],
"Medium Models (7-12B)": [
"mistralai/Mistral-7B-Instruct-v0.3",
"Qwen/Qwen2.5-7B-Instruct",
"mistralai/Mistral-Nemo-Instruct-2407",
"01-ai/Yi-1.5-9B-Chat",
# Removed gated models: meta-llama/Llama-3.1-8B-Instruct, google/gemma-2-9b-it
],
"Reasoning & Analysis": [
"deepseek-ai/deepseek-llm-7b-chat",
"upstage/SOLAR-10.7B-Instruct-v1.0",
"NousResearch/Hermes-3-Llama-3.1-8B",
"Qwen/Qwen2.5-14B-Instruct",
],
"Diverse & Multilingual": [
"tiiuae/falcon-7b-instruct",
"openchat/openchat-3.5-0106",
"teknium/OpenHermes-2.5-Mistral-7B",
],
}
# Flatten all models
ALL_MODELS = [model for category in MODELS_BY_CATEGORY.values() for model in category]
# Global state
current_results = []
dataset_cache = None
PERSISTENT_RESULTS_FILE = "persistent_results.json"
def load_persistent_results():
"""Load persistent results from disk"""
if Path(PERSISTENT_RESULTS_FILE).exists():
try:
with open(PERSISTENT_RESULTS_FILE, 'r') as f:
return json.load(f)
except Exception as e:
print(f"Error loading persistent results: {e}")
return []
return []
def save_persistent_results(results):
"""Save results to persistent storage"""
try:
with open(PERSISTENT_RESULTS_FILE, 'w') as f:
json.dump(results, f, indent=2)
except Exception as e:
print(f"Error saving persistent results: {e}")
def merge_results(existing_results, new_results):
"""Merge new results with existing, keeping best score per model"""
# Create dict of existing results keyed by model name
results_dict = {r['model']: r for r in existing_results}
# Update with new results (keep best accuracy)
for new_result in new_results:
model_name = new_result['model']
if model_name in results_dict:
# Keep result with higher accuracy
existing_acc = results_dict[model_name].get('overall_accuracy', 0)
new_acc = new_result.get('overall_accuracy', 0)
if new_acc > existing_acc:
results_dict[model_name] = new_result
else:
results_dict[model_name] = new_result
# Convert back to list and sort by accuracy
merged = list(results_dict.values())
merged.sort(key=lambda x: x.get('overall_accuracy', 0), reverse=True)
return merged
def clear_persistent_results():
"""Clear all persistent results"""
try:
if Path(PERSISTENT_RESULTS_FILE).exists():
Path(PERSISTENT_RESULTS_FILE).unlink()
# Return empty displays
return (
"β
Persistent results cleared!",
pd.DataFrame(),
None,
None
)
except Exception as e:
return (
f"β Error clearing results: {e}",
pd.DataFrame(),
None,
None
)
def load_initial_leaderboard():
"""Load and display persistent leaderboard on startup"""
persistent_results = load_persistent_results()
if persistent_results:
table = format_results_table(persistent_results)
chart = create_comparison_chart(persistent_results)
download = create_download_data(persistent_results)
return table, chart, download
return pd.DataFrame(), None, None
def load_benchmark_dataset(subset="australian", num_samples=200):
"""Load and sample AusCyberBench dataset"""
global dataset_cache
if dataset_cache is None:
# Load data files individually to handle different schemas per file
from datasets import concatenate_datasets
# Get list of category files for the subset
import glob
from huggingface_hub import hf_hub_download
# Manually specify the categories to avoid globbing issues
categories = [
"knowledge_terminology",
"knowledge_threat_intelligence",
"regulatory_essential_eight",
"regulatory_ism_controls",
"regulatory_privacy_act",
"regulatory_soci_act"
]
datasets_list = []
for category in categories:
try:
ds = load_dataset(
"json",
data_files=f"hf://datasets/Zen0/AusCyberBench/data/{subset}/{category}.jsonl",
split="train"
)
# Remove metadata columns that may differ between files
cols_to_remove = [col for col in ds.column_names if col not in [
'task_id', 'category', 'subcategory', 'title', 'description',
'task_type', 'difficulty', 'answer', 'options', 'context',
'australian_focus', 'regulatory_references'
]]
if cols_to_remove:
ds = ds.remove_columns(cols_to_remove)
datasets_list.append(ds)
except Exception as e:
print(f"Warning: Could not load {category}: {e}")
# Concatenate all datasets
dataset_cache = concatenate_datasets(datasets_list)
# Proportional sampling
import random
random.seed(42)
by_category = defaultdict(list)
for item in dataset_cache:
by_category[item['category']].append(item)
total = len(dataset_cache)
samples = []
for cat, items in by_category.items():
n_cat = max(1, int(len(items) / total * num_samples))
if len(items) <= n_cat:
samples.extend(items)
else:
samples.extend(random.sample(items, n_cat))
random.shuffle(samples)
return samples[:num_samples]
def format_prompt(task, model_name):
"""Format task as prompt with proper chat template"""
question = task['description']
if task.get('task_type') == 'multiple_choice' and 'options' in task:
options_text = "\n".join([f"{opt['id']}. {opt['text']}" for opt in task['options']])
if 'phi' in model_name.lower():
return f"""<|user|>
{question}
{options_text}
Respond with ONLY the letter of the correct answer (A, B, C, or D).<|end|>
<|assistant|>"""
elif 'gemma' in model_name.lower():
return f"""<start_of_turn>user
{question}
{options_text}
Respond with ONLY the letter of the correct answer (A, B, C, or D).<end_of_turn>
<start_of_turn>model
"""
else:
return f"""[INST] {question}
{options_text}
Respond with ONLY the letter of the correct answer (A, B, C, or D). [/INST]"""
else:
return f"""[INST] {question} [/INST]"""
def extract_answer(response, task):
"""Extract answer letter from model response"""
response = response.strip()
if task.get('task_type') == 'multiple_choice':
# Try multiple extraction patterns
# Pattern 1: Letter with word boundary
match = re.search(r'\b([A-D])\b', response, re.IGNORECASE)
if match:
return match.group(1).upper()
# Pattern 2: Letter with punctuation (A. A) A: etc)
match = re.search(r'([A-D])[.):,]', response, re.IGNORECASE)
if match:
return match.group(1).upper()
# Pattern 3: "Answer: A" or "Answer is A"
match = re.search(r'(?:answer|choice)(?:\s+is)?\s*:?\s*([A-D])\b', response, re.IGNORECASE)
if match:
return match.group(1).upper()
# Pattern 4: First character if it's A-D
if response and response[0].upper() in ['A', 'B', 'C', 'D']:
return response[0].upper()
# Pattern 5: Look anywhere in first 50 chars for isolated letter
first_part = response[:50]
for char in first_part:
if char.upper() in ['A', 'B', 'C', 'D']:
return char.upper()
return ""
else:
return response[:100]
def cleanup_model(model, tokenizer):
"""Thoroughly clean up model to free memory"""
if model is not None:
del model
if tokenizer is not None:
del tokenizer
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
gc.collect()
@spaces.GPU # Uses default 60s duration (ZeroGPU free tier limit)
def evaluate_single_model(model_name, tasks, use_4bit=True, temperature=0.7, max_tokens=128, progress=gr.Progress()):
"""Evaluate a single model on the benchmark"""
progress(0, desc=f"Loading {model_name.split('/')[-1]}...")
try:
# Load model
if use_4bit:
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
else:
quant_config = None
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quant_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.float16 if not use_4bit else None
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
progress(0.1, desc=f"Evaluating {model_name.split('/')[-1]}...")
# Evaluate tasks
results = []
for i, task in enumerate(tasks):
progress((0.1 + 0.8 * i / len(tasks)), desc=f"Task {i+1}/{len(tasks)}")
try:
prompt = format_prompt(task, model_name)
# COMPREHENSIVE DEBUG
if i == 0:
import sys
debug_msg = f"\n{'='*60}\nDEBUG FIRST TASK\n{'='*60}\n"
debug_msg += f"Prompt length: {len(prompt)} chars\n"
debug_msg += f"Prompt preview: {prompt[:200]}...\n"
print(debug_msg, flush=True)
sys.stdout.flush()
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
if 'token_type_ids' in inputs:
inputs.pop('token_type_ids')
if i == 0:
print(f"Input shape: {inputs['input_ids'].shape}", flush=True)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id,
use_cache=False # Disable KV cache to avoid DynamicCache compatibility issues
)
if i == 0:
print(f"Output shape: {outputs.shape}", flush=True)
print(f"Input length: {inputs['input_ids'].shape[1]}", flush=True)
response = tokenizer.decode(
outputs[0][inputs['input_ids'].shape[1]:],
skip_special_tokens=True
)
# FORCE PRINT WITH FLUSH
if i < 3:
import sys
msg = f"\n>>> TASK {i} RESPONSE: '{response}' (len={len(response)})\n"
print(msg, flush=True)
sys.stdout.flush()
# Also write to file for debugging
with open('/tmp/debug_responses.txt', 'a') as f:
f.write(msg)
predicted = extract_answer(response, task)
correct = task.get('answer', '')
is_correct = predicted.upper() == correct.upper()
if i < 3:
msg = f">>> TASK {i} EXTRACT: predicted='{predicted}', correct='{correct}', match={is_correct}\n"
print(msg, flush=True)
sys.stdout.flush()
with open('/tmp/debug_responses.txt', 'a') as f:
f.write(msg)
results.append({
'task_id': task.get('task_id'),
'category': task.get('category'),
'predicted': predicted,
'correct': correct,
'is_correct': is_correct
})
except Exception as e:
import traceback
import sys
error_msg = f"\n!!! EXCEPTION in task {i}: {str(e)}\n{traceback.format_exc()}\n"
print(error_msg, flush=True)
sys.stdout.flush()
with open('/tmp/debug_responses.txt', 'a') as f:
f.write(error_msg)
results.append({
'task_id': task.get('task_id'),
'category': task.get('category'),
'predicted': '',
'correct': task.get('answer', ''),
'is_correct': False
})
# Calculate metrics
total_correct = sum(1 for r in results if r['is_correct'])
overall_accuracy = (total_correct / len(results)) * 100
category_stats = defaultdict(lambda: {'correct': 0, 'total': 0})
for result in results:
cat = result['category']
category_stats[cat]['total'] += 1
if result['is_correct']:
category_stats[cat]['correct'] += 1
category_scores = {
cat: (stats['correct'] / stats['total']) * 100 if stats['total'] > 0 else 0
for cat, stats in category_stats.items()
}
progress(1.0, desc="Complete!")
return {
'model': model_name,
'overall_accuracy': overall_accuracy,
'total_correct': total_correct,
'total_tasks': len(results),
'category_scores': category_scores,
'detailed_results': results
}
except Exception as e:
return {
'model': model_name,
'error': str(e),
'overall_accuracy': 0,
'total_correct': 0,
'total_tasks': len(tasks)
}
finally:
cleanup_model(
model if 'model' in locals() else None,
tokenizer if 'tokenizer' in locals() else None
)
def run_evaluation(selected_models, num_samples, use_4bit, temperature, max_tokens, progress=gr.Progress()):
"""Run evaluation on selected models"""
global current_results
if not selected_models:
return "Please select at least one model to evaluate.", None, None
# Load existing persistent results
persistent_results = load_persistent_results()
# Load dataset
progress(0, desc="Loading AusCyberBench dataset...")
tasks = load_benchmark_dataset(num_samples=num_samples)
# Evaluate each model
new_results = []
for i, model_name in enumerate(selected_models):
progress((i / len(selected_models)), desc=f"Model {i+1}/{len(selected_models)}")
result = evaluate_single_model(
model_name, tasks, use_4bit, temperature, max_tokens, progress
)
new_results.append(result)
# Merge with persistent results after each model
current_results = merge_results(persistent_results, new_results)
save_persistent_results(current_results)
# Yield intermediate results (showing full leaderboard including historical)
yield format_results_table(current_results), create_comparison_chart(current_results), None
# Final results (merged with historical)
current_results = merge_results(persistent_results, new_results)
save_persistent_results(current_results)
final_table = format_results_table(current_results)
final_chart = create_comparison_chart(current_results)
download_data = create_download_data(current_results)
yield final_table, final_chart, download_data
def format_results_table(results):
"""Format results as DataFrame for display"""
if not results:
return pd.DataFrame()
rows = []
for result in results:
if 'error' in result:
rows.append({
'Rank': 'β',
'Model': result['model'].split('/')[-1],
'Accuracy': '0.0%',
'Correct/Total': f"0/{result['total_tasks']}",
'Status': f"Error: {result['error'][:50]}"
})
else:
rows.append({
'Rank': '',
'Model': result['model'].split('/')[-1],
'Accuracy': f"{result['overall_accuracy']:.1f}%",
'Correct/Total': f"{result['total_correct']}/{result['total_tasks']}",
'Status': 'β Complete'
})
df = pd.DataFrame(rows)
# Sort by accuracy and assign ranks
df['_sort'] = df['Accuracy'].str.replace('%', '').astype(float)
df = df.sort_values('_sort', ascending=False)
# Assign medals (handle cases with fewer than 3 models)
medals = ['π₯', 'π₯', 'π₯']
ranks = medals[:len(df)] + [''] * max(0, len(df) - len(medals))
df['Rank'] = ranks
df = df.drop('_sort', axis=1)
return df
def create_comparison_chart(results):
"""Create enhanced bar chart comparing model accuracies with Australian color scheme"""
if not results or all('error' in r for r in results):
return None
valid_results = [r for r in results if 'error' not in r]
if not valid_results:
return None
models = [r['model'].split('/')[-1] for r in valid_results]
accuracies = [r['overall_accuracy'] for r in valid_results]
# Sort by accuracy
sorted_pairs = sorted(zip(models, accuracies), key=lambda x: x[1], reverse=True)
models, accuracies = zip(*sorted_pairs)
# Create figure with Australian colors
fig, ax = plt.subplots(figsize=(14, max(7, len(models) * 0.45)))
# Create color gradient from green to gold
colors = []
for i, acc in enumerate(accuracies):
# Top performers get gold, others get green with varying intensity
if i == 0:
colors.append(AUSSIE_GOLD)
elif i < 3:
colors.append('#00A86B') # Bright green
else:
colors.append(AUSSIE_GREEN)
bars = ax.barh(models, accuracies, color=colors, edgecolor='black', linewidth=0.5)
# Add accuracy labels
for i, (model, acc) in enumerate(zip(models, accuracies)):
ax.text(acc + 1.5, i, f'{acc:.1f}%', va='center', fontweight='bold', fontsize=10)
# Styling
ax.set_xlabel('Accuracy (%)', fontsize=13, fontweight='bold')
ax.set_title('AusCyberBench: Model Performance Ranking', fontsize=15, fontweight='bold', pad=20)
ax.set_xlim(0, min(100, max(accuracies) + 10))
ax.grid(axis='x', alpha=0.3, linestyle='--')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# Add background color
ax.set_facecolor('#f9f9f9')
plt.tight_layout()
return plt
def create_download_data(results):
"""Create downloadable results file"""
if not results:
return None
# Create comprehensive results JSON
output = {
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S'),
'benchmark': 'AusCyberBench',
'results': results
}
# Save to file
output_path = 'auscyberbench_results.json'
with open(output_path, 'w') as f:
json.dump(output, f, indent=2)
return output_path
# Build Gradio interface
with gr.Blocks(title="AusCyberBench Evaluation Dashboard", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# π¦πΊ AusCyberBench Evaluation Dashboard
**Australia's First LLM Cybersecurity Benchmark** β’ 13,449 Tasks β’ 25 Open Models
Evaluate proven open language models on Australian cybersecurity knowledge including
Essential Eight, ISM Controls, Privacy Act, SOCI Act, and ACSC Threat Intelligence.
β
**Recommended models** have been tested: Qwen2.5-3B (55.6%), DeepSeek (55%), TinyLlama (33%)
""")
# Settings section at top for better UX
gr.Markdown("## βοΈ Evaluation Settings")
with gr.Row():
num_samples = gr.Slider(10, 500, value=10, step=10, label="Number of Tasks (10 recommended)")
use_4bit = gr.Checkbox(label="Use 4-bit Quantisation", value=True)
with gr.Row():
temperature = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature")
max_tokens = gr.Slider(8, 256, value=32, step=8, label="Max New Tokens")
run_btn = gr.Button("π Run Evaluation", variant="primary", size="lg")
gr.Markdown("---")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π Model Selection")
gr.Markdown("""
**πΎ Persistent Results:** Run 1-2 models at a time to avoid GPU timeouts.
Results merge with the leaderboard automatically!
""")
# Quick selection buttons
with gr.Row():
btn_recommended = gr.Button("β
Recommended (6)", size="sm", variant="primary")
btn_security = gr.Button("π‘οΈ Security (5)", size="sm", variant="secondary")
with gr.Row():
btn_small = gr.Button("Small (4)", size="sm")
btn_medium = gr.Button("Medium (4)", size="sm")
with gr.Row():
btn_all = gr.Button("Select All (25)", size="sm")
btn_clear = gr.Button("Clear All", size="sm")
# Model checkboxes by category
model_checkboxes = []
for category, models in MODELS_BY_CATEGORY.items():
gr.Markdown(f"**{category}**")
for model in models:
short_name = model.split('/')[-1]
cb = gr.Checkbox(label=f"{short_name}", value=False)
model_checkboxes.append((cb, model))
gr.Markdown("### β‘ GPU Limits")
gr.Markdown("""
**Free tier: 60-second limit**
- β
1-2 models: Safe
- β οΈ 3-5 models: May timeout
- β 6+ models: Will timeout
""")
with gr.Column(scale=2):
gr.Markdown("### π Persistent Leaderboard")
gr.Markdown("""
**πΎ Results persist across sessions!** Run models one at a time to build up a complete leaderboard.
- New runs merge with existing results
- Best score per model is kept
- Perfect for avoiding GPU timeouts
""")
clear_status = gr.Markdown("")
clear_btn = gr.Button("ποΈ Clear All Results", size="sm", variant="stop")
results_table = gr.Dataframe(
label="Leaderboard",
headers=["Rank", "Model", "Accuracy", "Correct/Total", "Status"],
interactive=False
)
comparison_plot = gr.Plot(label="Model Comparison")
download_file = gr.File(label="Download Results (JSON)")
# Quick select button actions
def select_recommended():
return [gr.update(value=(model in MODELS_BY_CATEGORY["β
Recommended (Tested)"]))
for cb, model in model_checkboxes]
def select_security():
return [gr.update(value=(model in MODELS_BY_CATEGORY["π‘οΈ Cybersecurity-Focused"]))
for cb, model in model_checkboxes]
def select_small():
return [gr.update(value=(model in MODELS_BY_CATEGORY["Small Models (1-4B)"]))
for cb, model in model_checkboxes]
def select_medium():
return [gr.update(value=(model in MODELS_BY_CATEGORY["Medium Models (7-12B)"]))
for cb, model in model_checkboxes]
def select_all():
return [gr.update(value=True) for _ in model_checkboxes]
def clear_all():
return [gr.update(value=False) for _ in model_checkboxes]
btn_recommended.click(select_recommended, outputs=[cb for cb, _ in model_checkboxes])
btn_security.click(select_security, outputs=[cb for cb, _ in model_checkboxes])
btn_small.click(select_small, outputs=[cb for cb, _ in model_checkboxes])
btn_medium.click(select_medium, outputs=[cb for cb, _ in model_checkboxes])
btn_all.click(select_all, outputs=[cb for cb, _ in model_checkboxes])
btn_clear.click(clear_all, outputs=[cb for cb, _ in model_checkboxes])
# Run evaluation
def prepare_evaluation(*checkbox_values):
selected = [model for (cb, model), val in zip(model_checkboxes, checkbox_values) if val]
return selected
def evaluation_wrapper(*args):
"""Wrapper to handle checkbox inputs and call run_evaluation as generator"""
selected = prepare_evaluation(*args[:-4])
yield from run_evaluation(
selected,
int(args[-4]),
args[-3],
args[-2],
int(args[-1])
)
run_btn.click(
fn=evaluation_wrapper,
inputs=[cb for cb, _ in model_checkboxes] + [num_samples, use_4bit, temperature, max_tokens],
outputs=[results_table, comparison_plot, download_file]
)
# Clear results button
clear_btn.click(
fn=clear_persistent_results,
outputs=[clear_status, results_table, comparison_plot, download_file]
)
# Load persistent leaderboard on startup
app.load(
fn=load_initial_leaderboard,
outputs=[results_table, comparison_plot, download_file]
)
gr.Markdown("""
---
**Dataset:** [Zen0/AusCyberBench](https://huggingface.co/datasets/Zen0/AusCyberBench) β’ 13,449 tasks |
**Models:** 25 open LLMs (no gated models) |
**License:** MIT
""")
if __name__ == "__main__":
app.queue().launch()
|