Spaces:
Runtime error
Runtime error
File size: 1,376 Bytes
d3f9112 22d2355 d3f9112 b654b17 b5679ab 22d2355 b654b17 a87f66b 22d2355 b5679ab b654b17 22d2355 393fc90 22d2355 b654b17 22d2355 b654b17 22d2355 b654b17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load Falcon-7B-Instruct model with 4-bit quantization
model_id = "tiiuae/falcon-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
load_in_4bit=True,
trust_remote_code=True
)
# Function to generate response
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
outputs = model.generate(
**inputs,
max_length=100,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Gradio interface
iface = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(label="Enter your prompt", placeholder="Type here..."),
outputs=gr.Textbox(label="Zephyrix Response"),
title="Zephyrix - Pakistan's First AI Model",
description="Built with love in Pakistan!"
)
# Launch app
iface.launch(server_name="0.0.0.0", server_port=7860) |