Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +36 -64
- requirements.txt +0 -1
app.py
CHANGED
|
@@ -7,21 +7,18 @@ from aimakerspace.openai_utils.prompts import (
|
|
| 7 |
SystemRolePrompt,
|
| 8 |
AssistantRolePrompt,
|
| 9 |
)
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
from
|
| 13 |
-
# from aimakerspace.openai_utils.chatmodel import ChatOpenAI
|
| 14 |
import chainlit as cl
|
| 15 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 16 |
-
# from
|
| 17 |
-
# from langchain_openai.embeddings import OpenAIEmbeddings
|
| 18 |
-
from sentence_transformers import SentenceTransformer
|
| 19 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 20 |
-
from langchain_community.vectorstores import FAISS
|
| 21 |
-
from langchain_openai.embeddings import OpenAIEmbeddings
|
| 22 |
-
from langchain_core.documents import Document
|
| 23 |
from dotenv import load_dotenv
|
| 24 |
-
|
| 25 |
|
| 26 |
load_dotenv()
|
| 27 |
|
|
@@ -37,27 +34,27 @@ Question:
|
|
| 37 |
"""
|
| 38 |
user_role_prompt = UserRolePrompt(user_prompt_template)
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
|
| 52 |
-
|
| 53 |
|
| 54 |
-
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
|
| 60 |
-
|
| 61 |
|
| 62 |
text_splitter = RecursiveCharacterTextSplitter()
|
| 63 |
|
|
@@ -80,8 +77,8 @@ def process_text_file(file: AskFileResponse):
|
|
| 80 |
documents = pdf_loader.load()
|
| 81 |
else:
|
| 82 |
raise ValueError("Provide a .txt or .pdf file")
|
| 83 |
-
|
| 84 |
-
|
| 85 |
return text_splitter.split_documents(documents)
|
| 86 |
|
| 87 |
|
|
@@ -100,7 +97,8 @@ async def on_chat_start():
|
|
| 100 |
max_files=10
|
| 101 |
).send()
|
| 102 |
|
| 103 |
-
|
|
|
|
| 104 |
for file in files:
|
| 105 |
|
| 106 |
msg = cl.Message(
|
|
@@ -110,50 +108,26 @@ async def on_chat_start():
|
|
| 110 |
|
| 111 |
# load the file
|
| 112 |
texts = process_text_file(file)
|
| 113 |
-
|
| 114 |
print(f"Processing {len(texts)} text chunks")
|
| 115 |
|
| 116 |
# Create a dict vector store
|
| 117 |
-
# vector_db = VectorDatabase()
|
| 118 |
-
# vector_db = await vector_db.abuild_from_list(texts)
|
| 119 |
|
| 120 |
-
|
| 121 |
|
| 122 |
-
|
| 123 |
-
# retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
|
| 124 |
-
# vector_db_retriever=vector_db,
|
| 125 |
-
# llm=chat_openai
|
| 126 |
-
# )
|
| 127 |
-
|
| 128 |
-
# model = SentenceTransformer("acpotts/finetuned_arctic")
|
| 129 |
-
|
| 130 |
-
finetune_embeddings = HuggingFaceEmbeddings(model_name='acpotts/finetuned_arctic')
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
from langchain_core.output_parsers import StrOutputParser
|
| 137 |
-
from langchain_core.runnables import RunnablePassthrough, RunnableParallel
|
| 138 |
-
|
| 139 |
-
rag_llm = ChatOpenAI(
|
| 140 |
-
model="gpt-4o-mini",
|
| 141 |
-
temperature=0
|
| 142 |
-
)
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
finetune_rag_chain = (
|
| 146 |
-
{"context": itemgetter("question") | finetune_retriever, "question": itemgetter("question")}
|
| 147 |
-
| RunnablePassthrough.assign(context=itemgetter("context"))
|
| 148 |
-
| {"response": system_template | rag_llm | StrOutputParser(), "context": itemgetter("context")}
|
| 149 |
)
|
| 150 |
-
|
| 151 |
|
| 152 |
# Let the user know that the system is ready
|
| 153 |
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
| 154 |
await msg.update()
|
| 155 |
|
| 156 |
-
cl.user_session.set("chain",
|
| 157 |
|
| 158 |
|
| 159 |
@cl.on_message
|
|
@@ -161,9 +135,7 @@ async def main(message):
|
|
| 161 |
chain = cl.user_session.get("chain")
|
| 162 |
|
| 163 |
msg = cl.Message(content="")
|
| 164 |
-
|
| 165 |
-
# result = await chain.arun_pipeline(message.content)
|
| 166 |
-
result = await chain.arun_pipeline({'question': message.content})
|
| 167 |
|
| 168 |
async for stream_resp in result["response"]:
|
| 169 |
await msg.stream_token(stream_resp)
|
|
|
|
| 7 |
SystemRolePrompt,
|
| 8 |
AssistantRolePrompt,
|
| 9 |
)
|
| 10 |
+
from aimakerspace.openai_utils.embedding import EmbeddingModel
|
| 11 |
+
from aimakerspace.vectordatabase import VectorDatabase
|
| 12 |
+
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
|
|
|
|
| 13 |
import chainlit as cl
|
| 14 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 15 |
+
# from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
| 16 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 17 |
+
# from langchain_community.vectorstores import FAISS
|
| 18 |
+
# from langchain_openai.embeddings import OpenAIEmbeddings
|
| 19 |
+
# from langchain_core.documents import Document
|
| 20 |
from dotenv import load_dotenv
|
| 21 |
+
|
| 22 |
|
| 23 |
load_dotenv()
|
| 24 |
|
|
|
|
| 34 |
"""
|
| 35 |
user_role_prompt = UserRolePrompt(user_prompt_template)
|
| 36 |
|
| 37 |
+
class RetrievalAugmentedQAPipeline:
|
| 38 |
+
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
|
| 39 |
+
self.llm = llm
|
| 40 |
+
self.vector_db_retriever = vector_db_retriever
|
| 41 |
|
| 42 |
+
async def arun_pipeline(self, user_query: str):
|
| 43 |
+
context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
|
| 44 |
|
| 45 |
+
context_prompt = ""
|
| 46 |
+
for context in context_list:
|
| 47 |
+
context_prompt += context[0] + "\n"
|
| 48 |
|
| 49 |
+
formatted_system_prompt = system_role_prompt.create_message()
|
| 50 |
|
| 51 |
+
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
|
| 52 |
|
| 53 |
+
async def generate_response():
|
| 54 |
+
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
|
| 55 |
+
yield chunk
|
| 56 |
|
| 57 |
+
return {"response": generate_response(), "context": context_list}
|
| 58 |
|
| 59 |
text_splitter = RecursiveCharacterTextSplitter()
|
| 60 |
|
|
|
|
| 77 |
documents = pdf_loader.load()
|
| 78 |
else:
|
| 79 |
raise ValueError("Provide a .txt or .pdf file")
|
| 80 |
+
texts = [x.page_content for x in text_splitter.transform_documents(documents)]
|
| 81 |
+
|
| 82 |
return text_splitter.split_documents(documents)
|
| 83 |
|
| 84 |
|
|
|
|
| 97 |
max_files=10
|
| 98 |
).send()
|
| 99 |
|
| 100 |
+
embedding_model = HuggingFaceEmbeddings(model_name='acpotts/finetuned_arctic')
|
| 101 |
+
vector_db = VectorDatabase(embedding_model=embedding_model)
|
| 102 |
for file in files:
|
| 103 |
|
| 104 |
msg = cl.Message(
|
|
|
|
| 108 |
|
| 109 |
# load the file
|
| 110 |
texts = process_text_file(file)
|
| 111 |
+
|
| 112 |
print(f"Processing {len(texts)} text chunks")
|
| 113 |
|
| 114 |
# Create a dict vector store
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
vector_db = await vector_db.abuild_from_list(texts)
|
| 117 |
|
| 118 |
+
chat_openai = ChatOpenAI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
+
#Create a chain
|
| 121 |
+
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
|
| 122 |
+
vector_db_retriever=vector_db,
|
| 123 |
+
llm=chat_openai
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
)
|
|
|
|
| 125 |
|
| 126 |
# Let the user know that the system is ready
|
| 127 |
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
| 128 |
await msg.update()
|
| 129 |
|
| 130 |
+
cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
|
| 131 |
|
| 132 |
|
| 133 |
@cl.on_message
|
|
|
|
| 135 |
chain = cl.user_session.get("chain")
|
| 136 |
|
| 137 |
msg = cl.Message(content="")
|
| 138 |
+
result = await chain.arun_pipeline(message.content)
|
|
|
|
|
|
|
| 139 |
|
| 140 |
async for stream_resp in result["response"]:
|
| 141 |
await msg.stream_token(stream_resp)
|
requirements.txt
CHANGED
|
@@ -7,4 +7,3 @@ pypdf
|
|
| 7 |
sentence_transformers
|
| 8 |
langchain_text_splitters
|
| 9 |
langchain-community
|
| 10 |
-
faiss-cpu
|
|
|
|
| 7 |
sentence_transformers
|
| 8 |
langchain_text_splitters
|
| 9 |
langchain-community
|
|
|