Spaces:
Running
Running
Update utils.py
Browse files
utils.py
CHANGED
|
@@ -1,121 +1,44 @@
|
|
| 1 |
import os
|
| 2 |
-
from typing import List, IO, Tuple
|
| 3 |
from PyPDF2 import PdfReader
|
| 4 |
from docx import Document
|
|
|
|
|
|
|
| 5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
-
from
|
| 7 |
-
|
| 8 |
-
ChatGoogleGenerativeAI,
|
| 9 |
-
)
|
| 10 |
from langchain_community.vectorstores import FAISS
|
| 11 |
from langchain.prompts import PromptTemplate
|
| 12 |
from langchain.schema import Document as LangchainDocument
|
| 13 |
-
from dotenv import load_dotenv
|
| 14 |
-
import google.generativeai as genai
|
| 15 |
-
import streamlit as st
|
| 16 |
-
import tempfile
|
| 17 |
|
| 18 |
-
# Load environment variables
|
| 19 |
load_dotenv()
|
| 20 |
-
|
| 21 |
-
|
| 22 |
|
| 23 |
def get_pdf_text(pdf_docs: List[IO[bytes]]) -> str:
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
Args:
|
| 28 |
-
pdf_docs (List[IO[bytes]]): List of uploaded PDF files from Streamlit's file uploader.
|
| 29 |
-
|
| 30 |
-
Returns:
|
| 31 |
-
str: A single string containing concatenated text extracted from all PDFs.
|
| 32 |
-
"""
|
| 33 |
-
text = ""
|
| 34 |
-
for pdf in pdf_docs:
|
| 35 |
-
pdf_reader = PdfReader(pdf)
|
| 36 |
-
for page in pdf_reader.pages:
|
| 37 |
-
page_text = page.extract_text()
|
| 38 |
-
if page_text:
|
| 39 |
-
text += page_text + "\n"
|
| 40 |
-
return text
|
| 41 |
|
| 42 |
def get_docx_text(docx_docs: List[IO[bytes]]) -> str:
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
Args:
|
| 47 |
-
docx_docs (List[IO[bytes]]): List of uploaded Word files from Streamlit's file uploader.
|
| 48 |
-
|
| 49 |
-
Returns:
|
| 50 |
-
str: A single string containing concatenated text extracted from all Word documents.
|
| 51 |
-
"""
|
| 52 |
-
text = ""
|
| 53 |
-
for docx in docx_docs:
|
| 54 |
-
# Create a temporary file to handle the uploaded file
|
| 55 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix='.docx') as temp_file:
|
| 56 |
-
try:
|
| 57 |
-
# Write the uploaded file content to the temporary file
|
| 58 |
-
temp_file.write(docx.getvalue())
|
| 59 |
-
temp_file.flush()
|
| 60 |
-
|
| 61 |
-
# Open the document and extract text from paragraphs
|
| 62 |
-
doc = Document(temp_file.name)
|
| 63 |
-
doc_text = []
|
| 64 |
-
for paragraph in doc.paragraphs:
|
| 65 |
-
doc_text.append(paragraph.text)
|
| 66 |
-
|
| 67 |
-
text += '\n'.join(doc_text) + "\n"
|
| 68 |
-
|
| 69 |
-
except Exception as e:
|
| 70 |
-
st.warning(f"Warning: Could not process document {docx.name}: {str(e)}")
|
| 71 |
-
continue
|
| 72 |
-
finally:
|
| 73 |
-
# Clean up the temporary file
|
| 74 |
-
try:
|
| 75 |
-
os.unlink(temp_file.name)
|
| 76 |
-
except Exception:
|
| 77 |
-
pass
|
| 78 |
-
|
| 79 |
-
return text
|
| 80 |
|
| 81 |
def get_text_chunks(text: str) -> List[str]:
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
text (str): The raw text to split.
|
| 87 |
-
|
| 88 |
-
Returns:
|
| 89 |
-
List[str]: A list of text chunks.
|
| 90 |
-
"""
|
| 91 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
| 92 |
-
chunk_size=1000, # Reduced chunk size to match the working example
|
| 93 |
-
chunk_overlap=200 # Adjusted overlap to match the working example
|
| 94 |
-
)
|
| 95 |
-
return text_splitter.split_text(text)
|
| 96 |
|
| 97 |
def get_vector_store(text_chunks: List[str]) -> None:
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
Args:
|
| 102 |
-
text_chunks (List[str]): List of text chunks.
|
| 103 |
-
|
| 104 |
-
Returns:
|
| 105 |
-
None
|
| 106 |
-
"""
|
| 107 |
-
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 108 |
documents = [LangchainDocument(page_content=chunk) for chunk in text_chunks]
|
| 109 |
vector_store = FAISS.from_documents(documents, embedding=embeddings)
|
| 110 |
vector_store.save_local("faiss_index")
|
| 111 |
|
| 112 |
-
def get_conversational_chain() -> Tuple[
|
| 113 |
-
"""
|
| 114 |
-
Initialize the conversational AI model and prompt template.
|
| 115 |
-
|
| 116 |
-
Returns:
|
| 117 |
-
Tuple[ChatGoogleGenerativeAI, PromptTemplate]: Model and prompt template.
|
| 118 |
-
"""
|
| 119 |
prompt_template = """
|
| 120 |
As a professional assistant, provide a detailed and formally written answer to the question using the provided context.
|
| 121 |
Ensure that the response is professionally formatted and avoids informal language.
|
|
@@ -128,103 +51,64 @@ def get_conversational_chain() -> Tuple[ChatGoogleGenerativeAI, PromptTemplate]:
|
|
| 128 |
|
| 129 |
Answer:
|
| 130 |
"""
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
| 133 |
prompt = PromptTemplate(
|
| 134 |
template=prompt_template,
|
| 135 |
input_variables=["context", "question"]
|
| 136 |
)
|
| 137 |
-
return
|
| 138 |
-
|
| 139 |
|
| 140 |
def self_assess(question: str) -> str:
|
| 141 |
-
"""
|
| 142 |
-
Determine whether the AI can answer the question directly or needs to search the documents.
|
| 143 |
-
|
| 144 |
-
Args:
|
| 145 |
-
question (str): The user's question.
|
| 146 |
-
|
| 147 |
-
Returns:
|
| 148 |
-
str: The AI's response, which is either the direct answer or 'NEED_RETRIEVAL' if document search is needed.
|
| 149 |
-
"""
|
| 150 |
assessment_prompt = [
|
| 151 |
-
{
|
| 152 |
-
|
| 153 |
-
"content": "You are an expert assistant who provides professionally formatted and formally written answers.",
|
| 154 |
-
},
|
| 155 |
-
{
|
| 156 |
-
"role": "user",
|
| 157 |
-
"content": f"""
|
| 158 |
-
If you are confident in answering the following question based on your existing knowledge,
|
| 159 |
-
please provide a detailed and formally written answer directly. If you are not confident or require additional information to answer accurately,
|
| 160 |
-
please respond with 'NEED_RETRIEVAL'.
|
| 161 |
-
|
| 162 |
-
Question: {question}
|
| 163 |
-
""",
|
| 164 |
-
},
|
| 165 |
-
]
|
| 166 |
-
model = ChatGoogleGenerativeAI(model="gemini-1.5-pro", temperature=0.3)
|
| 167 |
-
response = model.invoke(assessment_prompt)
|
| 168 |
-
return response.content.strip() # Removed .upper()
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
def process_docs_for_query(docs: List[Document], question: str) -> str:
|
| 172 |
-
"""
|
| 173 |
-
Process documents to generate an answer to the user's question.
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
-
|
| 180 |
-
str: The AI-generated answer based on the documents.
|
| 181 |
-
"""
|
| 182 |
if not docs:
|
| 183 |
return "I apologize, but I couldn't find any relevant information in the provided documents to answer your question."
|
| 184 |
|
| 185 |
-
context = "\n\n".join(
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
response =
|
| 189 |
return response.content
|
| 190 |
|
| 191 |
-
|
| 192 |
def user_input(user_question: str) -> None:
|
| 193 |
-
"""
|
| 194 |
-
Handle user input, decide whether to search documents or answer directly, and display the response.
|
| 195 |
-
|
| 196 |
-
Args:
|
| 197 |
-
user_question (str): The question entered by the user.
|
| 198 |
-
|
| 199 |
-
Returns:
|
| 200 |
-
None
|
| 201 |
-
"""
|
| 202 |
assessment = self_assess(user_question)
|
| 203 |
|
| 204 |
-
# Display source notification
|
| 205 |
if assessment.strip().upper() == "NEED_RETRIEVAL":
|
| 206 |
st.info("🔍 Searching through your uploaded documents for the answer...")
|
| 207 |
need_retrieval = True
|
| 208 |
else:
|
| 209 |
-
need_retrieval = False
|
| 210 |
st.info("💡 Answering based on AI's built-in knowledge...")
|
|
|
|
| 211 |
|
| 212 |
try:
|
| 213 |
if need_retrieval:
|
| 214 |
-
embeddings =
|
| 215 |
-
|
| 216 |
-
"faiss_index", embeddings, allow_dangerous_deserialization=True
|
| 217 |
)
|
|
|
|
| 218 |
docs = vector_store.similarity_search(user_question)
|
| 219 |
-
|
| 220 |
else:
|
| 221 |
-
|
| 222 |
|
| 223 |
-
# Display the response
|
| 224 |
st.markdown("### Answer")
|
| 225 |
-
st.markdown(
|
| 226 |
|
| 227 |
-
except Exception:
|
| 228 |
-
st.error(
|
| 229 |
-
"⚠️ An error occurred while processing your question. Please make sure you've uploaded and processed your documents first."
|
| 230 |
-
)
|
|
|
|
| 1 |
import os
|
| 2 |
+
from typing import List, IO, Tuple
|
| 3 |
from PyPDF2 import PdfReader
|
| 4 |
from docx import Document
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
+
import streamlit as st
|
| 7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
+
from langchain_together.embeddings import TogetherEmbeddings
|
| 9 |
+
from langchain_together.chat_models import ChatTogether
|
|
|
|
|
|
|
| 10 |
from langchain_community.vectorstores import FAISS
|
| 11 |
from langchain.prompts import PromptTemplate
|
| 12 |
from langchain.schema import Document as LangchainDocument
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
# Load environment variables
|
| 15 |
load_dotenv()
|
| 16 |
+
if not os.getenv("TOGETHER_API_KEY"):
|
| 17 |
+
os.environ["TOGETHER_API_KEY"] = input("Enter TOGETHER_API_KEY: ")
|
| 18 |
|
| 19 |
def get_pdf_text(pdf_docs: List[IO[bytes]]) -> str:
|
| 20 |
+
# unchanged...
|
| 21 |
+
...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
def get_docx_text(docx_docs: List[IO[bytes]]) -> str:
|
| 24 |
+
# unchanged...
|
| 25 |
+
...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
def get_text_chunks(text: str) -> List[str]:
|
| 28 |
+
return RecursiveCharacterTextSplitter(
|
| 29 |
+
chunk_size=1000,
|
| 30 |
+
chunk_overlap=200
|
| 31 |
+
).split_text(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
def get_vector_store(text_chunks: List[str]) -> None:
|
| 34 |
+
embeddings = TogetherEmbeddings(
|
| 35 |
+
model="togethercomputer/m2-bert-80M-8k-retrieval"
|
| 36 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
documents = [LangchainDocument(page_content=chunk) for chunk in text_chunks]
|
| 38 |
vector_store = FAISS.from_documents(documents, embedding=embeddings)
|
| 39 |
vector_store.save_local("faiss_index")
|
| 40 |
|
| 41 |
+
def get_conversational_chain() -> Tuple[ChatTogether, PromptTemplate]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
prompt_template = """
|
| 43 |
As a professional assistant, provide a detailed and formally written answer to the question using the provided context.
|
| 44 |
Ensure that the response is professionally formatted and avoids informal language.
|
|
|
|
| 51 |
|
| 52 |
Answer:
|
| 53 |
"""
|
| 54 |
+
llm = ChatTogether(
|
| 55 |
+
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
|
| 56 |
+
temperature=0.3,
|
| 57 |
+
max_tokens=None
|
| 58 |
+
)
|
| 59 |
prompt = PromptTemplate(
|
| 60 |
template=prompt_template,
|
| 61 |
input_variables=["context", "question"]
|
| 62 |
)
|
| 63 |
+
return llm, prompt
|
|
|
|
| 64 |
|
| 65 |
def self_assess(question: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
assessment_prompt = [
|
| 67 |
+
{"role": "system", "content": "You are an expert assistant who provides professionally formatted and formally written answers."},
|
| 68 |
+
{"role": "user", "content": f"""If you are confident in answering the following question based on your existing knowledge, please provide a detailed and formally written answer directly. If you are not confident or require additional information to answer accurately, please respond with 'NEED_RETRIEVAL'.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
Question: {question}"""}
|
| 71 |
+
]
|
| 72 |
+
llm = ChatTogether(
|
| 73 |
+
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
|
| 74 |
+
temperature=0.3
|
| 75 |
+
)
|
| 76 |
+
response = llm.invoke(assessment_prompt)
|
| 77 |
+
return response.content.strip()
|
| 78 |
|
| 79 |
+
def process_docs_for_query(docs: List[LangchainDocument], question: str) -> str:
|
|
|
|
|
|
|
| 80 |
if not docs:
|
| 81 |
return "I apologize, but I couldn't find any relevant information in the provided documents to answer your question."
|
| 82 |
|
| 83 |
+
context = "\n\n".join(doc.page_content for doc in docs)
|
| 84 |
+
llm, prompt = get_conversational_chain()
|
| 85 |
+
formatted = prompt.format(context=context, question=question)
|
| 86 |
+
response = llm.invoke(formatted)
|
| 87 |
return response.content
|
| 88 |
|
|
|
|
| 89 |
def user_input(user_question: str) -> None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
assessment = self_assess(user_question)
|
| 91 |
|
|
|
|
| 92 |
if assessment.strip().upper() == "NEED_RETRIEVAL":
|
| 93 |
st.info("🔍 Searching through your uploaded documents for the answer...")
|
| 94 |
need_retrieval = True
|
| 95 |
else:
|
|
|
|
| 96 |
st.info("💡 Answering based on AI's built-in knowledge...")
|
| 97 |
+
need_retrieval = False
|
| 98 |
|
| 99 |
try:
|
| 100 |
if need_retrieval:
|
| 101 |
+
embeddings = TogetherEmbeddings(
|
| 102 |
+
model="togethercomputer/m2‑bert‑80M‑8k‑retrieval"
|
|
|
|
| 103 |
)
|
| 104 |
+
vector_store = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
| 105 |
docs = vector_store.similarity_search(user_question)
|
| 106 |
+
answer = process_docs_for_query(docs, user_question)
|
| 107 |
else:
|
| 108 |
+
answer = assessment
|
| 109 |
|
|
|
|
| 110 |
st.markdown("### Answer")
|
| 111 |
+
st.markdown(answer)
|
| 112 |
|
| 113 |
+
except Exception as e:
|
| 114 |
+
st.error(f"⚠️ An error occurred: {e}")
|
|
|
|
|
|